Probability Theory
and Stochastic
Processes
with Applications

Oliver Knill

Overseas Press



Probability and Stochastic
Processes with Applications



Probability and Stochastic
Processes with Applications

Oliver Knill

"llﬁ OVERSEAS PRESS (INDIA) PVT. LTD.



Copyright © Oliver Knill

Regd. Office:
Overseas Press India Private Limited

7/28, Ansari Road, Daryaganj
New Delhi-110 002

Email : info@overseaspub.com
Website : www.overseaspub.com

Sales Office :

Overseas Press India Private Limited
2/15, Ansari Road, Daryaganj

New Delhi-110 002

Email : orders@overseaspub.com
Website : www.overseaspub.com

All rights reserved. No part of this publication may be reproduced or transmitted
in any form or by any means, electronic or mechanical, including photocopying,
recording, or any information storage and retrieval system, without permission in
writing from the publisher/Authors.

Edition : 2009
10 digit ISBN : 81 - 89938 - 40 - 1
13 digit ISBN : 978 - 81 - 89938 - 40 - 6

Published by Narinder Kumar Lijhara for Overseas Press India Private Limited,
7/28, Ansari Road, Daryaganj, New Delhi-110002 and Printed in India.



Contents

Preface

1 Introduction ) 5
1.1 What is probability theory? . . . .. ... .. T 5
1.2 Some paradoxes in probability theory . . . ... ... ... 12
1.3 Some applications of probability theory . . ... ... ... 16

2 Limit theorems 23
2.1 Probability spaces, random variables, independence . . . . . 23
2.2 Kolmogorov’s 0 — 1 law, Borel-Cantelli lemma . . . . . . .. 34
2.3 Integration, Expectation, Variance . . . .. ... ... ... 39
2.4 Results fromreal analysis . . . ... ... ... ... .... 42
2.5 Someinequalities . . . . . .. ... .o oL 44
2.6 The weak law of large numbers . . . . . . ... ... .. .. 50
2.7 The probability distribution function . . . . ... ... ... 56
2.8 Convergence of random variables . . . . ... ... ... .. 59
2.9 The strong law of large numbers . . . . .. ... ... ... 64
2.10 Birkhoff’s ergodic theorem . . . . . . . . ... ... ... .. 68
2.11 More convergenceresults. . . . ... .. ... ... 72
2.12 Classes of random variables . . . . . .. .. ... ...... 78
2.13 Weak convergence . . . . ... ... ... ..., 90
2.14 The central limit theorem . . . . ... ... ... ... ... 92
2.15 Entropy of distributions . . . . ... ... ... 0 0. 98
2.16 Markovoperators . . . . . . . . ..o 107
2.17 Characteristic functions . . . . . . .. ... ... ... L. 110
2.18 The law of the iterated logarithm . . . . . . ... ... ... 117

3 Discrete Stochastic Processes 123
3.1 Conditional Expectation . . . . ... ... ... ... ..., 123
3.2 Martingales . . . . . . ... Lo oo 131
3.3 Doob’s convergence theorem . . . . . .. .. ... ... ... 143
3.4 Lévy’s upward and downward theorems . . ... ... ... 150
3.5 Doob’s decomposition of a stochastic process . . . . .. .. 152
3.6 Doob’s submartingale inequality . . ... ... ... .. .. 157
3.7 Doob’s LPinequality . . . ... . ... ... ... ...... 159
3.8 Randomwalks . . .. .. ... .. ... .. ... ..., 162



Contents

3.9 The arc-sin law for the 1D random walk . . . ... ... .. 167
3.10 The random walk on the freegroup . . . . . ... ... ... 171
3.11 The free Laplacian on a discrete group . . . . ... ... .. 175
3.12 A discrete Feynman-Kac formula, . . . . ... ... ..... 179
3.13 Discrete Dirichlet problem . . . . . . ... ... ....... 181
3.14 Markov processes . . . . ... ... ... ... e e 186
Continuous Stochastic Processes 191
4.1 Brownianmotion . ... .................... 191
4.2 Some properties of Brownian motion . . . . .. ... .. .. 198
43 The Wienermeasure . . . ... ... ............. 205
4.4 Lévy’s modulus of continuity . ................ 207
4.5 Stoppingtimes . ... ..................... 209
4.6 Continuous time martingales . .. ... .. ... ...... 215
4.7 Doob inequalities . . . . .. ... ... L L. 217
4.8 Khintchine’s law of the iterated logarithm . . . . .. .. .. 219
- 4.9 The theorem of Dynkin-Hunt . . ... ............ 222
' 4.10 Self-intersection of Brownian motion . . . ... ... .. .. 223
4.11 Recurrence of Brownian motion . . . . .. ... ... .. .. 228
4.12 Feynman-Kac formula . . ... ... ....... . ..... 230
4.13 The quantum mechanical oscillator . . . . . .. .. ... .. 235
4.14 Feynman-Kac for the oscillator . . . . ... ... ... ... 238
4.15 Neighborhood of Brownian motion . . . .. ... ... ... 241
4.16 The Ito integral for Brownian motion. . . . .. .. ... .. 245
4.17 Processes of bounded quadratic variation- . . ... ... .. 255
4.18 The Ito integral for martingales . . . . ... ... ... ... 260
4.19 Stochastic differential equations . . . . . .. ... ... ... 264
Selected Topics 275
5.1 Percolation .............. .. ........... 275
5.2 Random Jacobi matrices . . . . ... .. ... .. ... ... 286
5.3 Estimationtheory .. ... ... ............... 292
5.4 Vlasovdynamics ... ..................... 298
5.5 Multidimensional distributions . . . ... ... ....... 306
5.6 Poissonprocesses . . . . ... ... ... .. 311
57 Randommaps. . . .. ... ..... ... ... ...... 316
5.8 Circular random variables . . . ... ... .......... 319
5.9 Lattice points near Brownian paths . . . . . ... ... ... 327
5.10 Arithmetic random variables . .. ... ... ... ... .. 333
5.11 Symmetric Diophantine Equations . . . ... ... ... .. 343

5.12 Continuity of random variables . . . ... ... ..... .. 349



Preface

These notes grew from an introduction to probability theory taught during
the first and second term of 1994 at Caltech. There was a mixed audience of
undergraduates and graduate students in the first half of the course which
covered Chapters 2 and 3, and mostly graduate students in the second part
which covered Chapter 4 and two sections of Chapter 5.

Having been online for many years on my personal web sites, the text got
reviewed, corrected and indexed in the summer of 2006. It obtained some
enhancements which benefited from some other teaching notes and research,
I wrote while teaching probability theory at the University of Arizona in
Tucson or when incorporating probability in calculus courses at Caltech
and Harvard University.

Most of Chapter 2 is standard material and subject of virtually any course
on probability theory. Also Chapters 3 and 4 is well covered by the litera-
ture but not in this combination.

The last chapter ”selected topics” got considerably extended in the summer
of 2006. While in the original course, only localization and percolation prob-
lems were included, I added other topics like estimation theory, Vlasov dy-
namics, multi-dimensional moment problems, random maps, circle-valued
random variables, the geometry of numbers, Diophantine equations and
harmonic analysis. Some of this material is related to research I got inter-
ested in over time.

While the text assumes no prerequisites in probability, a basic exposure to
calculus and linear algebra is necessary. Some real analysis as well as some
background in topology and functional analysis can be helpful.

I would like to get feedback from readers. I plan to keep this text alive and
update it in the future. You can email this to knill@math.harvard.edu and
also indicate on the email if you don’t want your feedback to be acknowl-
edged in an eventual future edition of these notes.



4 Contents

To get a more detailed and analytic exposure to probability, the students
of the original course have consulted the book [105] which contains much .
more material than covered in class. Since my course had been taught,
many other books have appeared. Examples are [21, 34].

For a less analytic approach, see [40, 91, 97] or the still excellent classic
[26]. For an introduction to martingales, we recommend [108] and [47] from
both of which these notes have benefited a lot and to which the students
of the original course had access too.

For Brownian motion, we refer to [73, 66], for stochastic processes to [17],
for stochastic differential equation to [2, 55, 76, 66, 46], for random walks
to [100], for Markov chains to [27, 87], for entropy and Markov operators
[61]. For applications in physics and chemistry, see [106].

For the selected topics, we followed [32] in the percolation section. The
books [101, 30] contain introductions to Vlasov dynamics. The book of [1]
gives an introduction for the moment problem, 75, 64] for circle-valued
random variables, for Poisson processes, see [49, 9]. For the geometry of
numbers for Fourier series on fractals [45].

The book [109] contains examples which challenge the theory with counter
examples. {33, 92, 70] are sources for problems with solutions.

Probability theory can be developed using nonstandard analysis on finite
probability spaces [74]. The book [42] breaks some of the material of the
first chapter into attractive stories. Also texts like [89, 78] are not only for
mathematical tourists.

We live in a time, in which more and more content is available online.
Knowledge diffuses from papers and books to online websites and databases
which also ease the digging for knowledge in the fascinating field of proba-
bility theory.

Oliver Knill



Chapter 1

Introduction

1.1 What is probability theory?

Probability theory is a fundamental pillar of modern mathematics with
relations to other mathematical areas like algebra, topology, analysis, ge-
ometry or dynamical systems. As with any fundamental mathematical con-
struction, the theory starts by adding more structure to a set (2. In a similar
way as introducing algebraic operations, a topology, or a time evolution on
a set, probability theory adds a measure theoretical structure to 2 which
generalizes ”counting” on finite sets: in order to measure the probability
of a subset A C §2, one singles out a class of subsets A, on which one can
hope to do so. This leads to the notion of a o-algebra A. It is a set of sub-
sets of Q in which on can perform finitely or countably many operations
like taking unions, complements or intersections. The elements in A are
called events. If a point w in the "laboratory” € denotes an ”experiment”,
an "event” A € A is a subset of {), for which one can assign a proba-
bility P[A] € [0,1]. For example, if P[A] = 1/3, the event happens with
probability 1/3. If P[A] = 1, the event takes place almost certainly. The
probability measure P has to satisfy obvious properties like that the union
AU B of two disjoint events A, B satisfies P[A U B] = P[A] + P[B] or that
the complement A° of an event A has the probability P[A°] = 1 — P[A].
With a probability space (2, .4, P) alone, there is already some interesting
mathematics: one has for example the combinatorial problem to find the
probabilities of events like the event to get & ”royal flush” in poker. If
is a subset of an Euclidean space like the plane, P[A] = [, f(z,y) dzdy
for a suitable nonnegative function f, we are led to integration problems
in calculus. Actually, in many applications, the probability space is part of
Euclidean space and the o-algebra is the smallest which contains all open
sets. It is called the Borel s-algebra. An important example is the Borel
o-algebra on the real line.

Given a probability space (2, .4, P), one can define random variables X. A
random variable is a function X from € to the real line R which is mea-

surable in the sense that the inverse of a measurable Borel set B in R is
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6 Chapter 1. Introduction

in A. The interpretation is that if w is an experiment, then X (w) mea-
sures an observable quantity of the experiment. The technical condition of
measurability resembles the notion of a continuity for a function f from a
topological space (£2, Q) to the topological space (R, U). A function is con-
tinuous if f~'(U) € O for all open sets U € U. In probability theory, where
functions are often denoted with capital letters, like X ,Y,..., a random
variable X is measurable if X ~!(B) € A for all Borel sets B € B. Any
continuous function is measurable for the Borel o-algebra. As in calculus,
where one does not have to worry about continuity most of the time, also in
probability theory, one often does not have to sweat about measurability is-
sues. Indeed, one could suspect that notions like o-algebras or measurability
were introduced by mathematicians to scare normal folks away from their
realms. This is not the case. Serious issues are avoided with those construc-
tions. Mathematics is eternal: a once established result will be true also in
thousands of years. A theory in which one could prove a theorem as well as
its negation would be worthless: it would formally allow to prove any other
result, whether true or false. So, these notions are not only introduced to
keep the theory "clean”, they are essential for the "survival” of the theory.
We give some examples of "paradoxes” to illustrate the need for building
a careful theory. Back to the fundamental notion of random variables: be-
cause they are just functions, one can add and multiply them by defining
(X +Y)(w) = X(w) +Y(w) or (XY)(w) = X(w)Y(w). Random variables
form so an algebra £. The expectation of a random variable X is denoted
by E[X] if it exists. It is a real number which indicates the "mean” or "av-
erage” of the observation X. It is the value, one would expect to measure in
the experiment. If X = 1p is the random variable which has the value 1 if
w is in the event B and 0 if w is not in the event B, then the expectation of
X is just the probability of B. The constant random variable X (w) = a has
the expectation E[X] = a. These two basic examples as well as the linearity
requirement E[aX +bY] = aE[X]+ bE[Y] determine the expectation for all
random variables in the algebra £: first one defines expectation for finite
sums ) ", a;1p, called elementary random variables, which approximate
general measurable functions. Extending the expectation to a subset £ of
the entire algebra is part of integration theory. While in calculus, one can
live with the Riemann integral on the real line, which defines the integral
by Riemann sums f: f(x) dx ~ 'lhlz*/ﬂgiu'%f(é/n)' the integral defined in
measure theory is the Lebesgue integral. The later is more fundamental
and probability theory is a major motivator for using it. It allows to make
statements like that the probability of the set of real numbers with periodic
decimal expansion has probability 0. In general, the probability of A is the
expectation of the random variable X(z) = f(z) = 14(2). In calculus, the
integral _[;)] f(z) dz would not be defined because a Riemann integral can
give 1 or 0 depending on how the Riemann approximation is done. Probabil-
ity theory allows to introduce the Lebesgue integral by defining ft:’ f(z) dz
as the limit of 137" | f(x;) for n — oo, where z; are random uniformly
distributed points in the interval [a,b]. This Mente Carlo definition of the
Lebesgue integral is based on the law of large numbers and is as intuitive
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to state as the Riemann integral which is the limit of > z;=j/nelab] fx;)
for n — oo.

With the fundamental notion of expectation one can define the variance,
Var[X] = E[X?] — E[X]? and the standard deviation o{X] = \/Var[X] of a
random variable X for which X2 € £!. One can also look at the covariance
Cov[XY] = E[XY] — E[X]E[Y] of two random variables X,Y for which -
X2,Y? € £'. The correlation Corr[X,Y] = Cov[XY]/(c[X]a[Y]) of two
random variables with positive variance is a number which tells how much
the random variable X is related to the random variable Y. If E[XY] is
interpreted as an inner product, then the standard deviation is the length
of X —E[X] and the correlation has the geometric interpretation as cos(@),
where « is the angle between the centered random variables X — E[X] and
Y — E[Y]. For example, if Cov{X,Y] =1, then Y = AX for some A > 0, if
Cov[X,Y] = —1, they are anti-parallel. If the correlation is zero, the geo-
metric interpretation is that the two random variables are perpendicular.
Decorrelated random variables still can have relations to each other but if
for any measurable real functions f and g, the random variables f(X } and
g(X) are uncorrelated, then the random variables X,Y are independent.

A random variable X can be described well by its distribution function
Fx. This is a real-valued function defined as Fx(s) = P[X < s] on R,
where {X < s} is the event of all experiments w satisfying X (w) < s. The
distribution function does not encode the internal structure of the random
variable X; it does not reveal the structure of the probability space for ex-
ample. But the function Fx allows the construction of a probability space
with exactly this distribution function. There are two important types of
distributions, continuous distributions with a probability density function
fx = F) and discrete distributions for which F" is piecewise constant. An
example of a continuous distribution is the standard normal distribution,
where fx(z) = e=%"/2 /v/2%. One can characterize it as the distribution
with maximal entropy I(f) = — [log(f(z))f(z) dr among all distributions
which have zero mean and variance 1. An example of a discrete distribu-
tion is the Poisson distribution P[X = k] = e 27 on N = {0,1,2,... }.
One can describe random variables by their moment generating functions
Mx(t) = E[eX?] or by their characteristic function ¢x(t) = E[e*Xt]. The
later is the Fourier transform of the law pux = F which is a measure on
the real line R.

The law px of the random variable is a probability measure on the real
line satisfying ux ((a,b]) = Fx(b) — Fx(a). By the Lebesgue decomposition
theorem, one can decompose any measure y into a discrete part p,,, an
absolutely continuous part s, and a singular continuous part y,.. Random
variables X for which px is a discrete measure are called discrete random
variables, random variables with a continuous law are called continuous
random variables. Traditionally, these two type of random variables are
the most important ones. But singular continuous random variables appear
too: in spectral theory, dynamical systems or fractal geometry. Of course,
the law of a random variable X does not need to be pure. It can mix the
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three types. A random variable can be mixed discrete and continuous for
example. '

Inequalities play an important role in probability theory. The Chebychev
inequality P[|X — E[X]| > ] < V—agﬁ is used very often. It is a spe-
cial case of the Chebychev-Markov inequality A(c) - P[X > ¢] < E[h(X)]
+ for monotone nonnegative functions h. Other inequalities are the Jensen
inequality E[h(X)] > h(E[X]) for convex functions h, the Minkowski in-
equality ||X + Y|, < [|X]|, + ||Y||, or the Holder inequality || XY||; <
I XIplY (g, 1/p +1/q = 1 for random variables, X,Y, for which Xy =
E[| XI?],|[Y |l = E[|Y|9] are finite. Any inequality which appears in analy-
sis can be useful in the toolbox of probability theory.

Independence is an central notion in probability theory. Two events A, B
are called independent, if P[4 N B] = P[A] - P[B]. An arbitrary set of
events A; is called independent, if for any finite subset of them, the prob-
ability of their intersection is the product of their probabilities. Two o-
algebras A, B are called independent, if for any pair A € A, B € B, the
events A, B are independent. Two random variables X,Y are independent,
if they generate independent o-algebras. It is enough to check that the
events A = {X € (a,b)} and B = {Y € (c,d)} are independent for
all intervals (a,b) and (c,d). One should think of independent random
variables as two aspects of the laboratory Q which do not influence each
other. Each event A = {a < X(w) < b } is independent of the event
B = {c < Y(w) < d}. While the distribution function Fx_,y of the sum of
two independent random variables is a convolution [, Fx (t—s) dFy (s), the
moment generating functions and characteristic functions satisfy the for-
mulas Mx 1y (t) = Mx(t)My (t) and ¢x4y(t) = dx (t)dy (t). These identi-
ties make Mx, ¢x valuable tools to compute the distribution of an arbitrary
finite sum of independent random variables.

Independence can also be explained using conditional probability with re-
spect to an event B of positive probability: the conditional probability
P[A|B] = P[AN B]/P[B] of A is the probability that A happens when we
know that B takes place. If B is independent of A, then P[A|B] = P[A] but
in general, the conditional probability is larger. The notion of conditional
probability leads to the important notion of conditional expectation E[X |B]
of a random variable X with respect to some sub-o-algebra B of the o al-
gebra A; it is a new random variable which is B-measurable. For B = A, it
is the random variable itself, for the trivial algebra B = {§, Q2 }, we obtain
the usual expectation E[X] = E[X|{0,Q }]. If B is generated by a finite
partition By, ..., By, of  of pairwise disjoint sets covering 2, then E[X|B]
is piecewise constant on the sets B; and the value on B; is the average
value of X on B;. If B is the o-algebra of an independent random variable
Y, then E[X|Y] = E{X|B] = E[X]. In general, the conditional expectation
with respect to B is a new random variable obtained by averaging on the
elements of B. One has E[X|Y] = h(Y) for some function h, extreme cases
being E[X 1] = E[X], E[X|X]| = X. An illustrative example is the situation
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where X (z,y) is a continuous function on the unit square with P = dzdy
as a probability measure and where Y(x y) = z. In that case, E[X|Y] is
a function of z alone, given by E[X|Y](z fo z,y) dy. This is called a
conditional integral.

A set {X;}ser of random variables defines a stochastic process. The vari-
able t € T is a parameter called ”time”. Stochastic processes are to prob-
ability theory what differential equations are to calculus. An example is a
family X, of random variables which evolve with discrete time n € N. De-
terministic dynamical system theory branches into discrete time systems,
the iteration of maps and continuous time systems, the theory of ordinary
and partial differential equations. Similarly, in probability theory, one dis-
tinguishes between discrete time stochastic processes and continuous time
stochastic processes. A discrete time stochastic process is a sequence of ran-
dom variables X,, with certain properties. An important example is when
X,, are independent, identically distributed random variables. A continuous
time stochastic process is given by a family of random variables X;, where
t is real time. An example is a solution of a stochastic differential equation.
With more general time like Z¢ or R random variables are called random
fields which play a role in statistical physics. Examples of such processes
are percolation processes.

While one can realize every discrete time stochastic process X,, by a measure-
preserving transformation T : Q — @ and X,(w) = X(T™(w)), probabil-

ity theory often focuses a special subclass of systems called martingales,

where one has a filtration A, C An41 of o-algebras such that X, is An-

measurable and E[X,,|An-1] = Xn-1, where E[X,|An_1] is the conditional

expectation with respect to the sub-algebra A,_1. Martingales are a pow-

erful generalization of the random walk, the process of summing up I1ID

random variables with zero mean. Similar as ergodic theory, martingale

theory is a natural extension of probability theory and has many applica-

tions.

The language of probability fits well into the classical theory of dynam-
ical systems. For example, the ergodic theorem of Birkhoff for measure-
preserving transformations has as a special case the law of large numbers
which describes the average of partial sums of random variables 1 E k1 Xk-
There are different versions of the law of large numbers. ”Weak laws”
make statements about convergence in probability, "strong laws” make
statements about almost everywhere convergence. There are versions of
the law of large numbers for which the random variables do not need to
have a common distribution and which go beyond Birkhoff’s theorem. An
other important theorem is the central limit theorem which shows that
Sn = X1+ X3 + -+ X, normalized to have zero mean and variance 1
converges in law to the normal distribution or the law of the iterated loga-
rithm which says that for centered independent and identically distributed
X}, the scaled sum S, /A, has accumulation points in the interval [—o, 0]
if A, = v/2nloglogn and o is the standard deviation of X;. While stating
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the weak and strong law of large numbers and the central limit theorem,
different convergence notions for random variables appear: almost sure con-
vergence is the strongest, it implies convergence in probability and the later
implies convergence convergence in law. There is also El-convergence which
is stronger than convergence in probability.

As in the deterministic case, where the theory of differential equations is
more technical than the theory of maps, building up the formalism for
continuous time stochastic processes X; is more elaborate. Similarly as
for differential equations, one has first to prove the existence of the ob-
jects. The most important continuous time stochastic process definitely is
Brownian motion B;. Standard Brownian motion is a stochastic process
which satisfies By = 0, E[B;] = 0, Cov[Bs,B;] = s for s < t and for
any sequence of times, 0 =ty < t; < --+ < t; < t;41, the increments
By, ., — By, are all independent random vectors with normal distribution.
Browman motion B; is a solution of the stochastic differential equation

Bt = ((t), where ((t) is called white noise. Because white noise is only
deﬁned as a generalized function and is not a stochastic process by itself,
this stochastic differential equation has to be understood in its integrated
form B, = fo dBs = fo ¢(s) ds.

More generally, a solution to a stochastic differential equation % 4x, =
F(Xe)¢ ( )+ g(Xt) is defined as the solution to the integral equation X; =

Xo + fo ) dB; + fo 9(X,) ds. Stochastic differential equations can

be deﬁned in dlfferent ways. The expression fo Xs) dB; can either be
defined as an Ito integral, which leads to martingale solutions, or the
Stratonovich integral, which has similar integration rules than classical
differentiation equations. Examples of stochastic differential equations are

X; = X;((t) which has the solution Xt = eBt—t/2 Or £X, = B}(t)
which has as the solution the process X; = Bf — 10B} + ISBt The key tool
to solve stochastic differential equations is Ito s formula f(B;) — f(By) =
fo s)dBs + 5 fo f"(Bs) ds, which is the stochastic analog of the fun-
damental theorem of calculus. Solutlons to stochastic differential equations
are examples of Markov processes which show diffusion. Especially, the so-
lutions can be used to solve classical partial differential equations like the
Dirichlet problem Au = 0 in a bounded domain D with « = f on the
boundary §D. One can get the solution by computing the expectation of
f at the end points of Brownian motion starting at x and ending at the
boundary u = E;[f(Br)]. On a discrete graph, if Brownian motion is re-
placed by random walk, the same formula holds too. Stochastic calculus is
also useful to interpret quantum mechanics as a diffusion processes (73, 71]
or as a tool to compute solutions to quantum mechanical problems using
Feynman-Kac formulas.

Some features of stochastic process can be described using the language of
Markov operators P, which are positive and expectation-preserving trans-
formations on £'. Examples of such operators are Perron-Frobenius op-
erators X — X (T') for a measure preserving transformation 7' defining a
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discrete time evolution or stochastic matrices describing a random walk
on a finite graph. Markov operators can be defined by transition proba-
- bility functions which are measure-valued random variables. The interpre-
tation is that from a given point w, there are different possibilities to go
to. A transition probability measure P(w,-) gives the distribution of the
target. The relation with Markov operators is assured by the Chapman-
Kolmogorov equation P"*™ = P" o P™, Markov processes can be obtained
from random transformations, random walks or by stochastic differential
equations. In the case of a finite or countable target space S, one obtains
Markov chains which can be described by probability matrices P, which
are the simplest Markov operators. For Markov operators, there is an ar-
row of time: the relative entropy with respect to a background measure
is non-increasing. Markov processes often are attracted by fixed points of
the Markov operator. Such fixed points are called stationary states. They
describe equilibria and often they are measures with maximal entropy. An
example is the Markov operator P, which assigns to & probability density
fy the probability density of fi—— where Y + X is the random variable
Y + X normalized so that it has mean 0 and variance 1. For the initial
function f = 1, the function P™(fx) is the distribution of S} the nor-
malized sum of n IID random variables X;. This Markov operator has 3
unique equilibrium point, the standard normal distribution. It has maxi-
mal entropy among all distributions on the real line with variance 1 and
mean 0. The central limit theorem tells that the Markov operator P has
the normal distribution as a unique attracting fixed point if one takes the
weaker topology of convergence in distribution on £'. This works in other
situations too. For circle-valued random variables for example, the uniform
distribution maximizes entropy. It is not surprising therefore, that there is
a central limit theorem for circle-valued random variables with the uniform
distribution as the limiting distribution.

In the same way as mathematics reaches out into other scientific areas,
probability theory has connections with many other branches of mathe-
matics. The last chapter of these notes give some examples. The section
on percolation shows how probability theory can help to understand criti-
cal phenomena. In solid state physics, one considers operator-valued ran-
dom variables. The spectrum of random operators are random objects too.
One is interested what happens with probability one. Localization is the
phenomenon in solid state physics that sufficiently random operators of-
ten have pure point spectrum. The section on estimation theory gives a
glimpse of what mathematical statistics is about. In statistics one often
does not know the probability space itself so that one has to make a statis-
tical model and look at a parameterization of probability spaces. The goal
is to give maximum likelihood estimates for the parameters from data and
to understand how small the quadratic estimation error can be made. A
section on Vlasov dynamics shows how probability theory appears in prob-
lems of geometric evolution. Vliasov dynamics is a generalization of the
n-body problem to the evolution of of probability measures. One can look
at the evolution of smooth measures or measures located on surfaces. This
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deterministic stochastic system produces an evolution of densities which
can form singularities without doing harm to the formalism. It also defines
the evolution of surfaces. The section on moment problems is part of multi-
variate statistics. As for random variables, random vectors can be described
by their moments. Since moments define the law of the random variable,
the question arises how one can see from the moments, whether we have a
continuous random variable. The section of random maps is an other part
of dynamical systems theory. Randomized versions of diffeomorphisms can
be considered idealization of their undisturbed versions. They often can
be understood better than their deterministic versions. For example, many
random diffeomorphisms have only finitely many ergodic components. In
the section in circular random variables, we see that the Mises distribu-
tion has extremal entropy among all circle-valued random variables with
given circular mean and variance. There is also a central limit theorem
on the circle: the sum of IID circular random variables converges in law
to the uniform distribution. We then look at a problem in the geometry
of numbers: how many lattice points are there in a neighborhood of the
graph of one-dimensional Brownian motion? The analysis of this problem
needs a law of large numbers for independent random variables X with
uniform distribution on [0,1]: for 0 < § < 1, and A, = [0,1/n’] one has
limg, 00 %ZZ:I 1—“‘“71%@ = 1. Probability theory also matters in complex-
ity theory as a section on arithmetic random variables shows. It turns out
that random variables like X,(k) = k, Y,,(k) = k? + 3 mod n defined on
finite probability spaces become independent in the limit n — oc. Such
considerations matter in complexity theory: arithmetic functions defined
on large but finite sets behave very much like random functions. This is
reflected by the fact that the inverse of arithmetic functions is in general
difficult to compute and belong to the complexity class of NP. Indeed, if
one could invert arithmetic functions easily, one could solve problems like
factoring integers fast. A short section on Diophantine equations indicates
how the distribution of random variables can shed light on the solution
of Diophantine equations. Finally, we look at a topic in harmonic analy-
sis which was initiated by Norbert Wiener. It deals with the relation of
the characteristic function ¢x and the continuity properties of the random
variable X.

1.2 Some paradoxes in probability theory

Colloquial language is not always precise enough to tackle problems in
probability theory. Paradoxes appear, when definitions allow different in-
terpretations. Ambiguous language can lead to wrong conclusions or con-
tradicting solutions. To illustrate this, we mention a few problems. The
following four examples should serve as a motivation to introduce proba-
bility theory on a rigorous mathematical footing.

1) Bertrand’s paradox (Bertrand 1889)
We throw at random lines onto the unit disc. What is the probability that
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the line intersects the disc with a length > V3, the length of the inscribed
equilateral triangle?

First answer: take an arbitrary point P on the boundary of the disc. The
set of all lines through that point are parameterized by an angle ¢. In order
that the chord is longer than /3, the line has to lie within a sector of 60°
within a range of 180°. The probability is 1/3.

Second answer: take all lines perpendicular to a fixed diameter. The chord
is longer than V'3 if the point of iutersection lies on the middle half of the
diameter. The probability is 1/2.

Third answer: if the midpoints of the chords lie in a disc of radius 1/2, the

chord is longer than v/3. Because the disc has a radius which is half the
radius of the unit dise, the probability is 1/4.

Figure. Random an-  Figure. Random  Figure. Random area.
gle. translation.

Like most paradoxes in mathematics, a part of the question in Bertrand’s
problem is not well defined. Here it is the term "random line”. The solu-
tion of the paradox lies in the fact that the three answers depend on the
chosen probability distribution. There are several "natural” distributions.
The actual answer depends on how the experiment is performed.

2) Petersburg paradox (D.Bernoulli, 1738)

In the Petersburg casino, you pay an entrance fee ¢ and you get the prize
27, where T is the number of times, the casino flips a coin until "head”
appears. For example, if the sequence of coin experiments would give ”tail,
tail, tail, head”, you would win 2* — ¢ = 8 — ¢, the win minus the entrance
fee. Fair would be an entrance fee which is equal to the expectation of the

win, which is
- o0
D 2*P[T=k =) 1=0c0.
k=1 k=1

The paradox is that nobody would agree to pay even an entrance fee ¢ = 10.
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The problem with this casino is that it is not quite clear, what is ”fair”.
For example, the situation T = 20 is so improbable that it never occurs
in the life-time of a person. Therefore, for any practical reason, one has
not to worry about large values of T. This, as well as the finiteness of
money resources is the reason, why casinos do not have to worry about the
following bullet proof martingale strategy in roulette: bet ¢ dollars on red.
If you win, stop, if you lose, bet 2¢ dollars on red. If you win, stop. If you
lose, bet 4c dollars on red. Keep doubling the bet. Eventually after n steps,
red will occur and you will win 2%¢c — (¢ +2¢ + - +- + 2""!¢) = ¢ dollars.
This example motivates the concept of martingales. Theorem (3.2.7) or
proposition (3.2.9) will shed some light on this. Back to the Petersburg
paradox. How does one resolve it? What would be a reasonable entrance
fee in "real life” ? Bernoulli proposed to replace the expectation E[G] of the
profit G = 2T with the expectation (E[vVG])?, where u(z) = /z is called a
utility function. This would lead to a fair entrance

o0

2 _ k/29-k\2 _ 1
(BIVED? = (227 = oo

It is not so clear if that is a way out of the paradox because for any proposed
utility function u(k), one can modify the casino rule so that the paradox
reappears: pay (2F)2 if the utility function u(k) = vk or pay 2" dollars,
if the utility function is u(k) = log(k). Such reasoning plays a role in
economics and social sciences.

~ 5.828....

Figure. The picture to the right

shows the average profit devel- ;

opment during a typical tourna- : \'\,\
ment of 4000 Petersburg games.
After these 4000 games, the '
player would have lost about 10 : \‘-\
thousand dollars, when paying o

10 dollar entrance fee each game. ‘»

The player would have to play a \
very, very long time to catch up.
Mathematically, the player will
do so and have a profit in the
long run, but it is unlikely that
it will happen in his or her life
time.

'

R 2000

-
:

3) The three door problem (1991) Suppose you’re on a game show and
you are given a choice of three doors. Behind one door is a car and behind
the others are goats. You pick a door-say No. 1 - and the host, who knows
what’s behind the doors, opens another door-say, No. 3-which has a goat.
(In all games, he opens a door to reveal a goat). He then says to you, "Do
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you want to pick door No. 27” (In all games he always offers an option to
switch). Is it to your advantage to switch your choice?

The problem is also called ”Monty Hall problem” and was discussed by
Marilyn vos Savant in a "Parade” column in 1991 and provoked a big
controversy. (See [98] for pointers and similar examples.) The problem is
that intuitive argumentation can easily lead to the conclusion that it does
not matter whether to change the door or not. Switching the door doubles
the chances to win:

No switching: you choose a door and win with probability 1/3. The opening
of the host does not affect any more your choice.

Switching: when choosing the door with the car, you loose since you switch.
If you choose a door with a goat. The host opens the other door with the
goat and you win. There are two such cases, where you win. The probability
to win is 2/3.

4) The Banach-Tarski paradox (1924)
It is possible to cut the standard unit ball Q@ = {z € R? | |z| < 1 } into 5
disjoint pieces Q = Y UY,UY3UY, UYs and rotate and translate the pieces
with transformations T; so that T;(Y;) U T3(Y2) = Q and T3(Y3) UTy(Yy) U
T5(Ys) = €' is a second unit ball Q' = {z € R? | |z — (3,0,0)| < 1} and all
the transformed sets again don’t intersect.
While this example of Banach-Tarski is spectacular, the existence of bounded
subsets A of the circle for which one can not assign a translational invari-
ant probability P[A] can already be achieved in one dimension. The Italian
mathematician Giuseppe Vitali gave in 1905 the following example: define
an equivalence relation on the circle T = [0, 27) by saying that two angles
are equivalent = ~ y if (z—y)/7 is a rational angle. Let A be a subset in the
circle which contains exactly one number from each equivalence class. The
axiom of choice assures the existence of A. If z;, Ta,... is a enumeration
of the set of rational angles in the circle, then the sets 4; = A + x; are
pairwise disjoint and satisfy (J;-, 4; = T. If we could assign a translational
invariant probability P[A;] to A, then the basic rules of probability would
give

o x> O

1=P[T) =P J 4] =) P4] =>'p.

i=1 i=1 =1

But there is no real number p = P[A] = P[4;] which makes this possible.
Both the Banach-Tarski as well as Vitalis result shows that one can not
hope to define a probability space on the algebra A of all subsets of the unit
ball or the unit circle such that the probability measure is translational
and rotational invariant. The natural concepts of ” length” or ”volume”,
which are rotational and translational invariant only makes sense for a
smaller algebra. This will lead to the notion of o-algebra. In the context
of topological spaces like Euclidean spaces, it leads to Borel o-algebras,
algebras of sets generated by the compact sets of the topological space.
This language will be developed in the next chapter.
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1.3 Some applications of probability theory

Probability theory is a central topic in mathematics. There are close re-
lations and intersections with other fields like computer science; ergodic
theory and dynamical systems, cryptology, game theory, analysis, partial
differential equation, mathematical physics, economical sciences, statistical
mechanics and even number theory. As a motivation, we give some prob-
lems and topics which can be treated with probabilistic methods.

1) Random walks: (statistical mechanics, gambling, stock markets, quan-
tum field theory).

Assume you walk through a lattice. At each vertex, you choose a direction
at random. What is the probability that you return back to your start-
ing point? Polya’s theorem (3.8.1) says that in two dimensions, a random
walker almost certainly returns to the origin arbitrarily often, while in three
dimensions, the walker with probability 1 only returns a finite number of
times and then escapes for ever.

Figure. A random  Figure. A piece of a
walk in one dimen-  random walk in two
sions displayed as a  dimensions.

graph (t, By).

Figure. A piece of a
random walk in three
dimensions.

2) Percolation problems (model of a porous medium, statistical mechanics,
critical phenomena).

Each bond of a rectangular lattice in the plane is connected with probability
p and disconnected with probability 1 — p. Two lattice points z,y in the
lattice are in the same cluster, if there is a path from z to y. One says that
" percolation occurs” if there is a positive probability that an infinite cluster
appears. One problem is to find the critical probability p., the infimum of all
p, for which percolation occurs. The problem can be extended to situations,
where the switch probabilities are not independent to each other. Some
random variables like the size of the largest cluster are of interest near the
critical probability p..
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Figure. Bond percola-  Figure. Bond percola-  Figure. Bond percola-
tion with p=0.2. tion with p=0.4. tion with p=0.6.

A variant of bond percolation is site percolation where the nodes of the
lattice are switched on with probability p.

A LR
e

- -
RS

L W R
.--..f

s e Ly

Figure. Site percola- Figure. Site percola-  Figure. Site percola-
tion with p=0.2. tion with p=0.4. tion with p=0.6.

Generalized percolation problems are obtained, when the independence
of the individual nodes is relaxed. A class of such dependent percola-
tion problems can be obtained by choosing two irrational numbers «, 3
like @ = v2—1 and 8 = v/3 — 1 and switching the node (n,m) on if
{(na + mB) mod 1 € [0, p). The probability of switching a node on is again
p, but the random variables

Xn,m = 1(na+m,@) mod 1€[0,p)

are no more independent.
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Figure. Dependent  Figure. Dependent  Figure. Dependent
site percolation with  site percolation with  site percolation with
p=0.2. p=0.4. p=0.6.

Even more general percolation problems are obtained, if also the distribu-
tion of the random variables X, ,, can depend on the position (n,m).

3) Random Schrédinger operators. (quantum mechanics, functional analy-
sis, disordered systems, solid state physics)

Consider the linear map Lu(n) = }_,,,_,=; 4(n) + V(n)u(n) on the space
of sequences u = (..., u—2,u_1,Ug, U1, Uz, ... ). We assume that V(n) takes
random values in {0, 1}. The function V is called the potential. The problem
is to determine the spectrum or spectral type of the infinite matrix L on
the Hilbert space [2 of all sequences u with finite ||u||Z = 00 __ 2.
The operator L is the Hamiltonian of an electron in a one-dimensional
disordered crystal. The spectral properties of L have a relation with the
conductivity properties of the crystal. Of special interest is the situation,
where the values V(n) are all independent random variables. It turns out
that if V(n) are IID random variables with a continuous distribution, there
are many eigenvalues for the infinite dimensional matrix L - at least with
probability 1. This phenomenon is called localization.
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wave

iH3(0)

Figure. A
Y(t)
evolving in a random
potential at t = 0.
Shown are both the
potential V,, and the
wave 1(0).

Figure. A wave
Y(t) ett3)(0)
evolving in a random
potential at t = 1.
Shown are both the
potential V,, and the
wave P(1).
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il
Figure. A wave
wit) = ey(0)

evolving in a random
potential at t = 2.
Shown are both the
potential V, and the
wave ¥(2).

More general operators are obtained by allowing V(n) to be random vari-
ables with the same distribution but where one does not persist on indepen-
dence any more. A well studied example is the almost Mathieu operator,
where V(n) = Acos(@ + na) and for which o/(27) is irrational.

4) Classical dynamical systems (celestial mechanics, fluid dynamics, me-
chanics, population models)

The study of deterministic dynamical systems like the logistic map = —
4z(1 — x) on the interval [0, 1] or the three body problem in celestial me-
chanics has shown that such systems or subsets of it can behave like random
systems. Many effects can be described by ergodic theory, which can be
seen as a brother of probability theory. Many results in probability the-
ory generalize to the more general setup of ergodic theory. An example is
Birkhoff’s ergodic theorem which generalizes the law of large numbers.



20

Figure. Iterating the
logistic map

T(z)=4z(1-1x)

on [0,1] produces
independent random
variables. The in-

variant measure P is
continuous.

b

Figure. The simple
mechanical system of
a double pendulum
erhibits  complicated
dynamics. The dif-
ferential equation
defines a measure
preserving flow T; on
a probability space.
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Figure. A short time
evolution of the New-
tonian  three  body
problem. There are
energies and subsets
of the energy surface
which  are  invari-
ant and on which
there is an invariant
probability measure.

Given a dynamical system given by a map T or a flow T} on a subset,  of
some Euclidean space, one obtains for every invariant probability measure
P a probability space (2, A, P). An observed quantity like a coordinate of
an individual particle is a random variable X and defines a stochastic pro-
cess Xp(w) = X(T"w). For many dynamical systems including also some 3
body problems, there are invariant measures and observables X for which
Xn are IID random variables. Probability theory is therefore intriasically
relevant also in classical dynamical systems.

5) Cryptology. (computer science, coding theory, data encryption)

Coding theory deals with the mathematics of encrypting codes or deals
with the design of error correcting codes. Both aspects of coding theory
have important applications. A good code can repair loss of information
due to bad channels and hide the information in an encrypted way. While
many aspects of coding theory are based in discrete mathematics, number
theory, algebra and algebraic geometry, there are probabilistic and combi-
natorial aspects to the problem. We illustrate this with the example of a
public key encryption algorithm whose security is based on the fact that
it is hard to factor a large integer N = pq into its prime factors p,gq but
easy to verify that p, g are factors, if one knows them. The number N can
be public but only the person, who knows the factors D,q can read the
message. Assume, we want to crack the code and find the factors p and q.

The simplest method is to try to find the factors by trial and error but this is
impractical already if N has 50 digits. We would have to search through 10%°
numbers to find the factor p. This corresponds to probe 100 million times
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every second over a time span of 15 billion years. There are better methods
known and we want to illustrate one of them now: assume we want to find
the factors of N = 11111111111111111111111111111111111111111111111.
The method goes as follows: start with an integer a and iterate the quadratic
map T(z) = 22 + cmod N on {0,1.,,,.N —1 }. If we assume the numbers
zo = a,z1 = T(a),z2 = T(T(a)) ... to be random, how many such numbers
do we have to generate, until two of them are the same modulo one of the
prime factors p? The answer is surprisingly small and based on the birthday
paradox: the probability that in a group of 23 students, two of them have the
same birthday is larger than 1/2: the probability of the event that we have
no birthday match is 1(364/365)(363/365) - - - (343/365) = 0.492703. . ., so
that the probability of a birthday match is 1 — 0.492703 = 0.507292. This
is larger than 1/2. If we apply this thinking to the sequence of numbers
z; generated by the pseudo random number generator T, then we expect
to have a chance of 1/2 for finding a match modulo p in ,/p iterations.
Because p < \/n, we have to try N 1/4 numbers, to get a factor: if z,, and
Zm, are the same modulo p, then ged(zn — Tm, N') produces the factor p of
N. In the above example of the 46 digit number N, there is a prime factor
p = 35121409. The Pollard algorithm finds this factor with probability 1/2
in \/p = 5926 steps. This is an estimate only which gives the order of mag-
nitude. With the above N, if we start with a = 17 and take a = 3, then we
have a match 27720 = T13860- It can be found very fast.

This probabilistic argument would give a rigorous probabilistic estimate
if we would pick truly random numbers. The algorithm of course gener-
ates such numbers in a deterministic way and they are not truly random.
The generator is called a pseudo random number generator. It produces
numbers which are random in the sense that many statistical tests can
not distinguish them from true random numbers. Actually, many random
number generators built into computer operating systems and program-
ming languages are pseudo random number generators.

Probabilistic thinking is often involved in designing, investigating and at-
tacking data encryption codes or random number generators.

6) Numerical methods. (integration, Monte Carlo experiments, algorithms)
In applied situations, it is often very difficult to find integrals directly. This
happens for example in statistical mechanics or quantum electrodynamics,
where one wants to find integrals in spaces with a large number of dimen-
sions. One can nevertheless compute numerical values using Monte Carlo
Methods with a manageable amount of effort. Limit theorems assure that
these numerical values are reasonable. Let us illustrate this with a very
simple but famous example, the Buffon needle problem.

A stick of length 2 is thrown onto the plane filled with parallel lines, all
of which are distance d = 2 apart. If the center of the stick falls within
distance y of a line, then the interval of angles leading to an intersection
with a grid line has length 2arccos(y) among a possible range of angles
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[0, 7]. The probability of hitting a line is therefore fol 2arccos(y)/m = 2/x.
This leads to a Monte Carlo method to compute 7. Just throw randomly
n sticks onto the plane and count the number & of times, it hits a line. The
number 2n/k is an approximation of «. This is of course not an effective
way to compute 7 but it illustrates the principle.

Figure. The Buffon needle prob-
lem is a Monte Carlo method
to compute m. By counting the
number of hits in a sequence of
experiments, one can get ran-
dom approzimations of m. The
law of large numbers assures that
the approzimations will converge
to the expected limit. All Monte
Carlo computations are theoreti-
cally based on limit theorems.
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Limit theorems

2.1 Probability spaces, random variables, indepen-
dence

In this section we define the basic notions of a ”probability space” and
”random variables” on an arbitrary set 2.

Definition. A set A of subsets of Q is called a o-algebra if the following
three properties are satisfied:

(i) Q € A,
(i) Ac A= A°=Q\Ac A,
(i) Ap € A= U, endn €A

A pair (€, .A) for which A is a o-algebra in ) is called a measurable space.

Properties. If A is a o-algebra, and A, is a sequence in A, then the fol-
lowing properties follow immediately by checking the axioms:

1) nnEN A'" € ‘A

2) limsup,, Ay := Nowy Unney An € A.

3) liminf, An == Usr; Norey, An € A.

4) A, B are algebras, then AN B is an algebra.

5) If { Ay }ics is a family of o- sub-algebras of A. then [, A; is a o-algebra.

Example. For an arbitrary set 2, A = {0, Q}) is a o-algebra. It is called
the trivial o-algebra.

Example. If Q is an arbitrary set, then A = {A C Q}) is a o-algebra. The
set of all subsets of  is the largest o-algebra one can define on a set.

23
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Example. A finite set of subsets A}, As,..., A, of Q which are pairwise
disjoint and whose union is , it is called a partition of Q. It generates the
o-algebra: A = {4 =J,.; A; } where J runs over all subsets of {1,..,n}.
This o-algebra has 2™ elements. Every finite o-algebra is of this form. The
smallest nonempty elements {A;, ..., A,} of this algebra are called atoms.

Definition. For any set C of subsets of §2, we can define o(C), the smallest
o-algebra A which contains C. The o-algebra A is the intersection of all
o-algebras which contain C. It is again a o-algebra.

Example. For Q@ = {1,2,3}, the set C = {{1,2},{2,3 }} generates the
o-algebra 4 which consists of all 8 subsets of §).

Definition. If (E, O) is a topological space, where O is the set of open sets
in E. then 0(0O) is called the Borel o-algebra of the topological space. If
A C B, then A is called a subalgebra of B. A set B in B is also called a
Borel set.

Remark. One sometimes defines the Borel o-algebra as the o-algebra gen-
erated by the set of compact sets C of a topological space. Compact sets
in a topological space are sets for which every open cover has a finite sub-
cover. In Euclidean spaces R™, where compact sets coincide with the sets
which are both bounded and closed, the Borel o-algebra generated by the
compact sets is the same as the one generated by open sets. The two def-
initions agree for a large class of topological spaces like ” locally compact
separable metric spaces”.

Remark. Often, the Borel o-algebra is enlarged to the o-algebra of all
Lebesgue measurable sets, which includes all sets B which are a subset
of a Borel set A of measure 0. The smallest o-algebra B which contains
all these sets is called the completion of B. The completion of the Borel
o-algebra is the o-algebra of all Lebesgue measurable sets. It is in general
strictly larger than the Borel o-algebra. But it can also have pathological
features like that the composition of a Lebesgue measurable function with
a continuous functions does not need to be Lebesgue measurable any more.
(See [109], Example 2.4). ’

Example. The o-algebra generated by the open balls C = {4 = B,(z) } of
a metric space (X, d) need not to agree with the family of Borel subsets,
which are generated by O, the set of open sets in (X, d).

Proof. Take the metric space (R, d) where d(z,y) = 1{z=y} is the discrete
metric. Because any subset of R is open, the Borel o-algebra is the set of
all subsets of R. The open balls in R are either single points or the whole
space. The o-algebra generated by the open balls is the set of countable
subset of R together with their complements. ’
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Example. If Q = [0, 1] x [0,1] is the unit square and C is the set of all sets
of the form [0,1] x [a, ] with 0 < a < b < 1, then o(C) is the o-algebra of
all sets of the form [0,1] x A, where A is in the Borel g-algebra of [0, 1].

Definition. Given a measurable space (2,.4). A function P : A — R is
called a probability measure and (2,4, P) is called a probability space if
the following three properties called Kolmogorov axioms are satisfied:

(i) P[A] > 0 forall A € A,
(ii) P[] = 1,
(iii) A, € A disjoint = P[U, 4n] = 3, P[4y

The last property is called o-additivity.

Properties. Here are some basic properties of the probability measure
which immediately follow from the definition:
1) P[@] =0.
2) AC B = P[A] <P[B].
3) PlU, An] < 3., P[4al.
4) P[A°] = 1 — P[A].
5 0< P[4 < 1.
6) Ay C Ay, C --- with A, € A then P[,_; An] = limp, o P[Ay].

Remark. There are different ways to build the axioms for a probability
space. One could for example replace (i) and (ii) with properties 4),5) in
the above list. Statement 6) is equivalent to o-additivity if P is only assumed
to be additive.

Remark. The name ”"Kolmogorov axioms” honors a monograph of Kol-
mogorov from 1933 [53] in which an axiomatization appeared. Other math-
ematicians have formulated similar axiomatizations at the same time, like
Hans Reichenbach in 1932. According to Doob, axioms (i)-(iii) were first
proposed by G. Bohlmann in 1908 [22].

Definition. A map X from a measure space (§2,.A) to an other measure
space (A, B) is called measurable, if X !1(B) € A for all B € B. The set
X~Y(B) consists of all points z € § for which X (x) € B. This pull back set
X~1(B) is defined even if X is non-invertible. For example, for X (z) = z?
on (R, B) one has X ~1([1,4]) = {1,2] U [-2, ~1].

Definition. A function X : € — R is called a random variable, if it is a
measurable map from (£2,.4) to (R, B), where B is the Borel o-algebra of
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R. Denote by L the set of all real random variables. The set £ is an alge-
bra under addition and multiplication: one can add and multiply random
variables and gets new random variables. More generally, one can consider
random variables taking values in a second measurable space (E,B). If
E = RY, then the random variable X is called a random vector. For a ran-
dom vector X = (Xj,...,X,), each component X; is a random variable.

Example. Let Q = R? with Borel o-algebra 4 and let

P[4] = 517; /Ae_(m2_y2)/2 dzdy .

Any continuous function X of two variables is a random variable on €2. For
example, X(z,y) = zy(x + y) is a random variable. But also X(z,y) =
1/(z +y) is a random variable, even so it is not continuous. The vector-
valued function X (r,y) = (z,y,23) is an example of a random vector.

Definition. Every random variable X defines a o-algebra
X 'B)={X"YB)|BeB}.

We denote this algebra by o(X) and call it the o-algebra generated by X.
Example. A constant map X (z) = c defines the trivial algebra A = {0,0 }.

Example. The map X(z,y) = z from the square Q = [0,1] x [0,1] to the
real line R defines the algebra B = {A x [0,1] }, where A is in the Borel
o-algebra of the interval [0, 1].

Example. The map X from Zs = {0,1,2,3,4,5} to {0,1} C R defined by
X(z) = z mod 2 has the value X(z) = 0 if z is even and X(z) =1 if z is
odd. The o-algebra generated by X is A = {0, {1,3,5},{0,2,4},0 }.

Definition. Given a set B € A with P[B] > 0, we define

P[AN B]

P[A|B] = ~P[E]

the conditional probability of A with respect to B. It is the probability of
the event A, under the condition that the event B happens.

Example. We throw two fair dice. Let A be the event that the first dice is
6 and let B be the event that the sum of two dices is 11. Because P[B] =
2/36 = 1/18 and P[A N B] = 1/36 (we need to throw a 6 and then a 5),
we have P[A|B] = (1/16)/(1/18) = 1/2. The interpretation is that since
we know that the event B happens, we have only two possibilities: (5,6)
or (6,5). On this space of possibilities, only the second is compatible with
the event B.
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Exercice. a) Verify that the Sicherman dices with faces (1,3,4,5,6,8) and
(1,2,2,3,3,4) have the property that the probability of getting the value
k is the same as with a pair of standard dice. For example, the proba-
bility to get 5 with the Sicherman dices is 3/36 because the three cases
(1,4),(3,2),(3,2) lead to a sum 5. Also for the standard dice, we have
three cases (1,4),(2,3),(3.2).

b) Three dices A, B, C are called non-transitive, if the probability that A >
B is larger than 1/2, the probability that B > C is larger than 1/2 and the
probability that C > A is larger than 1/2. Verify the nontransitivity prop-
erty for A = (1,4,4,4,4,4), B = (3,3,3,3,3,6) and C = (2,2,2,5,5,5).

Properties. The following properties of conditional probability are called
Keynes postulates. While they follow immediately from the definition
of conditional probability, they are historically interesting because they
appeared already in 1921 as part of an axiomatization of probability theory:

1) P[A|B] > 0.

2) P[A|4] = 1.

3) P[A|B] + P[A|B] = 1.

4) P{AN B|C] = P[A|C] - P[B|ANC).

Definition. A finite set {A;,..., A, } C Ais called a finite partition of € if
Uj—1 Aj = Qand A;NA; =0 for i # j. A finite partition covers the entire
space with finitely many, pairwise disjoint sets.

If all possible experiments are partitioned into different events A; and the
probabilities that B occurs under the condition A;, then one can compute
the probability that A; occurs knowing that B happens:

Theorem 2.1.1 (Bayes rule). Given a finite partition {A;,.., A, } in A and
B € A with P[B] > 0, one has

P[B|A;]P[A]
Y j=1 P[B|A;]P[4;]

P[A;|B] =

Proof. Because the denominator is P[B] = 377_, P[B|A;]P[A;], the Bayes
rule just says P|A;|B]P[B] = P[B|A;|P[A;]. But these are by definition
both P[A; N B]. O
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Example. A fair dice is rolled first. It gives a random number k from
{1,2,3,4,5,6}. Next, a fair coin is tossed k times. Assume, we know that
all coins show heads, what is the probability that the score of the dice was
equal to 57

Solution. Let B be the event that all coins are heads and let A; be the
event that the dice showed the number ;. The problem is to find P[As|B].
We know P[B|A;] = 277, Because the events A;,j=1,...,6 form a par-
tition of Q, we have P[B] = Y0, P[B N 4;] = Y5_ P[B|4,]P[4;] =
Zgzl 279/6 =(1+1/2+1/3+1/4+ 1/641/6)/6 = 49/120. By Bayes
rule,

P[BIAs|P[4s]  _ (1/32)(1/6) _ 5
(5., PBIA;P14,])  49/120 ~ 392

P[4s|B] =

which is about 1 percent.

Example. The Girl-Boy problem: ”Dave has two child. One child is a boy.
What is the probability that the other child is a girl”?

Most people would intuitively say 1/2 because the second event looks inde-
pendent of the first. However, it is not and the initial intuition is mislead-
ing. Here is the solution: first introduce the probability space of all possible
events {) = {BG,GB, BB,GG} with P[{BG}] = P[{GB}] = P[{BB}] =
P{GG}] = 1/4. Let B = {BG,GB, BB} be the event that there is at least
one boy and A = {GB, BG,GG} be the event that there is at least one
girl. We have
P[AnB] (1/2) 2

PlAIB] = P[B]  (3/4) 3°

Definition. Two events A, B in s probability space (92, A, P) are called in-
dependent, if '
P[ANB]=P[4] -P[B].

Example. The probability space 2 = {1,2,3,4,5,6 } and p; = P[{i}] = 1/6
describes a fair dice which is thrown once. The set A = {1,3,5 } is the
event that ”the dice produces an odd number”. It has the probability 1/2.
The event B = {1,2 } is the event that the dice shows a number smaller
than 3. It has probability 1/3. The two events are independent because
P[ANB] =P[{1}] =1/6 = P[4] - P[B].

Definition. Write J Cy I if J is a finite subset of I. A family {A;}icr of o-
sub-algebras of A is called independent, if for every J C ¢ I and every choice
A; € A;j PN;e; Ajl = [Lies Pl4;)- A family {X,};es of random variables
is called independent, if {0(X;)};c are independent o-algebras. A family
of sets {A;} ;e is called independent, if the o-algebras Aj = {0, A;, A5, }
are independent.
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Example. On €2 = {1,2,3,4 } the two o-algebras A = {0, {1,3 },{2,4 },Q}
and B ={0,{1,2 },{3,4},Q } are independent.

Properties. (1) If a o-algebra F C A is independent to itself, then P[A N
A] = P[A] = P[A]? so that for every A € F, P[A] € {0,1}. Such a o-algebra
is called P-trivial.

(2) Two sets A, B € A are independent if and only if P[ANB] = P[A]-P[B].
(3) If A, B are independent, then A, B¢ are independent too.

(4) If P[B] > 0, and A, B are independent, then P[A|B] = P[A] because
P[A|B] = (P[A] - P[B])/P[B] = P[A].

(5) For independent sets A, B, the o-algebras A = {0, A, A°,Q1} and B =
{0, B, B¢,Q} are independent.

Definition. A family Z of subsets of 2 is called a w-system, if 7 is closed
under intersections: if A, B are in Z, then AN B is in Z. A o-additive map
from a 7-system Z to [0, 00) is called a measure.

Example. 1) The family 7 = {0, {1}, {2}, {3}, {1, 2}, {2, 3}, R} is a m-system
on  ={1,2,3}.

2) The set Z = {[a,b) |0 < a < b <1} U {0} of all half closed intervals is a
m-system on § = [0, 1] because the intersection of two such intervals [a, b)
and [c,d) is either empty or again such an interval [c, b).

Definition. We use the notation A, / A if A, C An41 and {J,, An = A.
Let Q be a set. (€2, D) is called a Dynkin system if D is a set of subsets of
Q satisfying

(i) Q€ A,
(ii) ABeD,ACB=B\AeD.
(i) A, € D,A, /A= AeD

Lemma 2.1.2. (,.A) is a o-algebra if and only if it is a 7-system and a
Dynkin system.

Proof. If Ais a g-algebra, then it certainly is both a m-system and a Dynkin
system. Assume now, A is both a m-system and a Dynkin system. Given
A, B € A. The Dynkin property implies that A° = Q\ A, B¢ = Q\ B are
in A and by the m-system property also AUB = 2\ (A°N B°) € A. Given
a sequence A, € A. Define B, = |J;_; Ax € Aand A = U, An- Then
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An /" A and by the Dynkin property A € A. Also (), A, =Q\U, A% € A
so that A is a o-algebra. O

Definition. If Z is any set of subsets of {2, we denote by d(Z) the smallest

Dynkin system, which contains Z and call it the Dynkin system generated
by Z.

Lemma 2.1.3. If 7 is a 7- system, then d(Z) = o(Z).

Proof. By the previous lemma, we need only to show that d(Z) is a ©—
system.

(i) Define D; = {B € d(Z) | BN C € d(Z),YC € T }. Because 7 is a
m-system, we have 7 C D;s.

Claim. Dy is a Dynkin system.

Proof. Clearly Q € Dy. Given A, B € D—-1with A C B.ForC € T
we compute (B\ A)NC = (BNC)\ (ANC) which is in d(Z). Therefore
A\B € D;. Given A, /* Awith A,, € D; and C € Z. Then A,NC / ANC
so that ANC € d(Z) and A € D;.

(ii) Define D; = {A € d(Z) | BN A € d(Z),VB € d(Z) }. From (i) we know
that T C D,. Like in (i), we show that Ds is a Dynkin-system. Therefore
D, = d(T), which means that d(Z) is a 7-system. O

Lemma 2.1.4. (Extension lemma) Given a 7-system Z. If two measures u, v
on o(Z) satisfy p(£2),v(Q) < oo and p(A) = v(A) for A€ Z, then u = v.

Proof. Proof of lemma (2.1.5). The set D = {A € o(Z) | u(4) = v(4) }
is Dynkin system: first of all § € D. Given 4,B € D,A C B. Then
w(B\A) = p(B)—p(A) = v(B)—v(A) = v(B\ A) so that B\ A € D. Given
A, € Dwith A, /' A, then the o additivity gives u(A) = limsup,, u(A,) =
limsup,, v(A,) = v(A), so that A € D. Since D is a Dynkin system con-
taining the 7-system Z, we know that o(Z) = d(Z) C D which means that
u=vono(Z). o

Definition. Given a probability space ({2, A, P). Two 7-systems Z,J C A
are called P-independent, if for all A € 7 and B € J, P[ANB] = P[A]-P[B].
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Lemma 2.1.5. Given a probability space (Q,.4,P). Let G,’H be two o-
subalgebras of A and Z and J be two m-systems satisfying o(Z) = G,
o(J) = H. Then G and H are independent if and only if 7 and J are
independent.

Proof. (i) Fix I € T and define on (Q,H) the measures u(H) = P{IN
H],v(H) = P[I|P[H] of total probability P(I]. By the independence of 7
and J, they coincide on J and by the extension lemma (2.1.4), they agree
on H and we have P[IN H] =P[I|P[H] forall ] € Z and H € H.

(ii) Define for fixed H € ‘H the measures u(G) = P[G N H} and v(G) =
P[G]P|H] of total probability P[H] on (£2,G). They agree on T and so on §.
We have shown that P[GNH] = P[G|P[H| forallG € GandallH € H. U

Definition. 4 is an algebra if A is a set of subsets of 2 satisfying

(i) Qe A,
(i) Ae A= A°c A,
(ii) A,Be A= AUBe A

A o-additive map from A to [0, 00) is called a measure.

Theorem 2.1.6 (Carathéodory continuation theorem). Any measure on an
algebra R has a unique continuation to a measure on o(R).

Before we launch into the proof of this theorem, we need two lemmas:

Definition. Let A be an algebra and A : A — [0, 00] with A(0) = 0. A set
A € Ais called a A-set, if \(ANG) +AX(A°NG)=AG) forall G € A.

Lemma 2.1.7. The set Ay of A-sets of an algebra A is again an algebra and
satisfies 3 p_; M4k N G) = A((Ur_; Ax) N G) for all finite disjoint families
{Ar}p_, and all G € A.

Proof. From the definition is clear that Q € Ay and that if B € Ay, then
B¢ € Ay. Given B,C € Ay. Then A = BN C € A,. Proof. Since C € A,,
we get

MCNA NG+ A(C°NANG) =MANG).
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This can be rewritten with C N A° = C N B¢ and C¢ N A° = C° as

AMANG)=MCNB°NG)+ AC°NG). (2.1)
Because B is a A-set, we get using BNC = A.
AMANG)+AB°NCNG)=XCNG). (2.2)
Since C is a A-set, we have
AMCNG)+XMC°NG) =AG) . (2.3)

Adding up these three equations shows that BN C is a A-set. We have so
verified that Aj is an algebra. If B and C are disjoint in A\ we deduce
from the fact that B is a A-set

AMBN(BUC)NG)+ AB°N(BUC)NG) =X(BUC)NG).

This can be rewritten as A(BNG) +A(CNG) = A((BUC)NG). The analog
statement for finitely many sets is obtained by induction. a

Definition. Let A be a o-algebra. A map A : A — [0,00] is called an outer
measure, if

A@) =0,
A,B e Awith AC B= \A) < (B)
An € A = AU, 4An) < 3, P[4n] (o subadditivity)

Lemma 2.1.8. (Carathéodory’s lemma) If X is an outer measure on a mea-
surable space (€, .4), then A, C A defines a g-algebra on which X is count-
ably additive.

Proof. Given a disjoint sequence A, € Ay. We have to show that A =
U, An € Ax and A(4) = Y, A(An). By the above lemma (2.1.7), B, =
U:=1 Ay is in A,. By the monotonicity, additivity and the o -subadditivity,
we have

MG) = MBuNG)+ABLNG) 2 ABr,NG) +AMA°NG)
= i,\ A NG)+ MANG) > MANG)+ AMA°NG) .
k=1

Subadditivity for A gives A(G) < A(ANG) + A(A°NG). All the inequalities
in this proof are therefore equalities. We conclude that A € £ and that A
is o additive on A,. O

We now prove the Caratheodory’s continuation theorem (2.1.6):
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Proof. Given an algebra R with a measure p. Define A = o(R) and the
o-algebra P consisting of all subsets of (2. Define on P the function

A(4) = inf{z 1{(Ar) | {An}nen sequence in R satisfying A C UA" }.

neN n

(i) A is an outer measure on P.

A(@) = 0 and A(A) D A(B) for B > A are obvious. To see the o subad-
ditivity, take a sequence A, € P with A(A,) < oo and fix € > 0. For all
n € N, one can (by the definition of \) find a sequence {By x}ken in R
such that A, C Ugen Bnk and 3oy #(Bnk) < MAn) +€27". Define A =
Unen An C Uy ken Bnok, so that A(4) < Zn’k W(Bnk) < 3, MAn) +e
Since € was arbitrary, the o-subadditivity is proven.

(i) \=ponR.

Given A € R. Clearly A(A) < u(A). Suppose that A C |J,, An, with 4, €
R. Define a sequence { By }nen of disjoint sets in R inductively By = A,
B, = ApnN(Ugen Ax)° such that B, C Ay, and {J,, B, = J,, An D A. From
the o-additivity of 1 on R follows

/*"(A) < U/‘(Bn) < U/‘(An) )

so that u(A) > A(A).

(iii) Let Py be the set of A-sets in P. Then R C P,.
Given A € R and G € P. There exists a sequence { By, }nen in R such that
G C U, Br and Y, u(B,) < A(G) + €. By the definition of A

> w(Bn) =) (AN BR)+ Y u(A°N By) > MANG) £ AA°NG)

because ANG C J,AN B, and A°NG C |, A° N B,,. Since € is ar-
bitrary, we get A(A) > A(A N G) + A(A° N G). On the other hand, since
A is sub-additive, we have also A(A4) < A(ANG)+A(A°NG) and A is a A-set.

(iv) By (i) A is an outer measure on (£, P,). Since by step (iii), R C Pa,
we know by Caratheodory’s lemma that A C P, so that we can define p
on A as the restriction of A to A. By step (ii), this is an extension of the
measure p on K. ]

Here is an overview over the possible set of subsets of §2 we have considered.
We also include the notion of ring and o-ring, which is often used in measure
theory and which differ from the notions of algebra or o-algebra in that
2 does not have to be in it. In probability theory, those notions are not
needed at first. For an introduction into measure theory, see [3, 37, 18].
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Set of 2 subsets | contains | closed under

topology 0,0 arbitrary unions, finite intersections
m-system finite intersections

Dynkin system | Q increasing countable union, difference
ring 0 complement and finite unions

o-ring 0 countably many unions and complement
algebra Q complement and finite unions

o-algebra 0,Q countably many unions and complement
Borel o-algebra | 0,Q o-algebra generated by the topology

Remark. The name "ring” has its origin to the fact that with the ” addition”
A+ B = AAB = (AUB)\ (AN B) and "multiplication” A- B = AN B,
a ring of sets becomes an algebraic ring like the set of integers, in which
rules like A- (B+C) = A- B+ A-C hold. The empty set 0 is the zero
element because AAQ = A for every set A. If the set § is also in the ring,
one has a ring with 1 because the identity AN Q = A shows that 2 is the
l-element in the ring.

Lets add some definitions, which will occur later:

Definition. A nonzero measure 4 on a measurable space (Q2,.A4) is called
positive, if u(A) > 0 for all A € A. If T,y are two positive measures
so that u(A) = p* — p~ then this is called the Hahn decomposition of L.
A measure is called finite if it has a Hahn decomposition and the positive
measure |u| defined by |u|(A4) = pt(A4) + u~(A) satisfies |u|(Q) < oo.

Definition. Let v be a measure on the measurable space (£2,.4). We write
v << p if for every A in the o-algebra A, the condition u(A) = 0 implies
v(A) = 0. One says that v is absolutely continuous with respect to u.

2.2 Kolmogorov’s 0 — 1 law, Borel-Cantelli lemma

Definition. Given a family {A;};c; of o-subalgebras of A. For any nonempty
set J C I, let A; := \/,; A; be the o-algebra generated by Ujes Aj-
Define also Ay = {0, Q} The tail o-algebra T of {A}ics is defined as
T =yc,1Ase, where J¢=T\T.

Theorem 2.2.1 (Kolmogorov’s 0 — 1 law). If {4;};cs are independent o-
algebras, then the tail o-algebra 7 is P-trivial: P[A] = 0 or P[A] = 1 for
every AeT.

Proof. (i) The algebras Ar and Ag are independent, whenever F,G C I
are disjoint.
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Proof. Define for H C I the m-system

IHZ{AE.AIA': ﬂAi,KCfH,AieAi}.
€K

The m-systems Zr and Z¢ are independent and generate the o-algebras Ap
and Ag. Use lemma (2.1.5).

(ii) Especially: A; is independent of A ;e for every J C I.

(iii) 7 is independent of Aj.

Proof. T = (\;c,;Ase is independent of any Ak for K Cy I. 1t is
therefore independfent to the m-system Z; which generates A;. Use again
lemma (2.1.5).

(iv) T is a sub-o-algebra of A;. Therefore 7 is independent of itself which
implies that it is P-trivial. a

Example. Let X,, be a sequence of independent random variables and let

A={we | ZXn converges } .
n=1
Then P[A] = 0 or P[4] = 1. Proof. Because )’ X, converges if and
only if 7% \ X,, converges, A € 0(An,An+1...) and so A € T, the
tail o- algebra defined by the independent o-algebras A, = o(Xn). If for
example, X, takes values +1/n, each with probability 1/2, then P[A] =0.
If X,, takes values +1/n? each with probability 1/2, then P[4] = 1. As you
might guess, the decision whether P[A] = 0 or P[A] = 0 is related to the
convergence or divergence of a series. We will come back to that later.

Example. Let {A,}nen be a sequence of of subsets of Q. The set

Aoo = limsup 4, = ﬁ U A,

n—00
m=1n>m

consists of the set {w € 0} such that w € A, for infinitely many n € N. The
set Ao, is contained in the tail o-algebra of A, = {0, A, A°,Q}. It follows
from Kolmogorov’s 0 — 1 law that P[Ao] € {0,1} if A, € A and {A,} are
P-independent.

Remark. In the theory of dynamical systems, a measurable map T': @ — Q
of a probability space (£2,.A,P) onto itself is called a K-system, if there
exists a o-subalgebra F C A which satisfies F C o(T(F)) for which the
sequence F, = o(T"(F)) satisfies Fy = A and which has a trivial tail
o-algebra T = {0, Q}. An example of such a system is a shift map T'(z), =
Zni1 on Q = AN where A is a compact topological space. The K-system
property follows from Kolmogorov’s 0—1 law: take F = Vi, T*(Fo), with
Fo={zeQ=A%|zp=rcA}
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Theorem 2.2.2 (First Borel-Cantelli lemma). Given a sequence of events
Ay € A. Then

D P[An] < 00 = P[Aq] = 0.

neN

Proof. P[As) = lim, .o P[Uan Ai] < limp o0 szn P[Ag) =0.

Theorem 2.2.3 (Second Borel-Cantelli lemma). For a sequence A,, € A of
independent events,

> PlAn] =00 = PlA) = 1.

neN

Proof. For every integer n € N,

P[() 471 = []Pag]

k>n k>n
= I -Pl4x) < [ exp(~P[AL])
k>n k2n
= exp(— Z P[Ag]) .

k>n

The right hand side converges to 0 for n — oo. From

AL=PIJ N 4al< Y PN45l=0

neENk>n n€N
follows P[AS | = 0. G

Example. The following example illustrates that independence is necessary
in the second Borel-Cantelli lemma: take the probability space ([0, 1], B, P),

where P = dz is the Lebesgue measure on the Borel o-algebra B of [0, 1].

For Ay, = [0,1/n] we get A, =0 and so P[As] = 0. But because P[4,] =
1/n we have 3  P[A,] = 3»° | 1 = oo because the harmonic series
Yoo 1/n dlverges

R R
212/ ld:z:=log(R).
n 1 2

n=1
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Example. ("Monkey typing Shakespeare”) Writing a novel amounts to en-
ter a sequence of N symbols into a computer. For example, to write ” Ham-
let”, Shakespeare had to enter N = 180’000 characters. A monkey is placed
in front of a terminal and types symbols-at random, one per unit time, pro-
ducing a random sequence X, of identically distributed sequence of random
variables in the set of all possible symbols. If each letter occurs with prob-
ability at least ¢, then the probability that Hamlet appears when typing
the first N letters is ¢¥. Call A; this event and call A; the event that
this happens when typing the (k — 1)N + 1 until the kN’th letter. These
sets Ay are all independent and have all equal probability. By the second
Borel-Cantelli lemma, the events occur infinitely often. This means that
Shakespeare’s work is not only written once, but infinitely many times. Be-
fore we model this precisely, lets look at the odds for random typing. There
are 30" possibilities to write a word of length N with 26 letters together
with a minimal set of punctuation: a space, a comma, a dash and a period
sign. The chance to write ”To be, or not to be - that is the question.”
with 43 random hits onto the keyboard is 1/10%%-5. Note that the life time
of a monkey is bounded above by 131400000 ~ 108 seconds so that it is
even unlikely that this single sentence will ever be typed. To compare the
probability probability, it is helpful to put the result into a list of known
large numbers [10, 38].

10* One "myriad”. The largest numbers, the Greeks were considering.
10°  The largest number considered by the Romans.

10'®  The age of the universe in years.

10" The age of the universe in seconds.

10*2  Distance to our neighbor galaxy Andromeda in meters.

10**  Number of atoms in two gram Carbon which is 1 Avogadro.
102  Estimated size of universe in meters.

10%°  Mass of the sun in kilograms.

10**  Mass of our home galaxy ”milky way” in kilograms.

10%  Archimedes’s estimate of number of sand grains in universe.
108°  The number of protons in the universe.

10100 One "googol”. (Name coined by 9 year old nephew of E. Kasner).

1053 Number mentioned in a myth about Buddha.
1058 Size of ninth Fermat number (factored in 1990).
101°° Size of large prime number (Mersenne number, Nov 1996).

101 Years, ape needs to write "hound of Baskerville” (random typing).
33
10 Inverse is chance that a can of beer tips by quantum fluctuation.

42
101° Inverse is probability that a mouse survives on the sun for a week.
50
10'°

10t
1010100

Estimated number of possible games of chess.
51
0 Inverse is chance to find yourself on Mars by quantum fluctuations

One " Gogoolplex”
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Lemma 2.2.4. Given a random variable X on a finite probability space A,
there exists a sequence X, Xs,... of independent random variables for
which all random variables X; have the same distribution as X.

Proof. The product space Q = AN is compact by Tychonov’s theorem. Let
A be the Borel-g-algebra on Q and let Qdenote the probability measure on
A. The probability measure P = Q7 is defined on ({,.4) has the property
that for any cylinder set

Z(w) ={w € Q| wk =Tk, Wkt1 = Tht1,-++1Wn =Tn }

defined by a "word” w = [rg,,...7 ],

P[Z(w)] = HP[‘W =ri| = HQ {r:i}) .

i=k

Finite unions of cylinder sets form an algebra R which generates o(R) = A.
The measure P is o-additive on this algebra. By Carathéodory’s continu-
ation theorem (2.1.6), there exists a measure P on (Q,.4). For this proba-
bility space (2, .4, P), the random variables Xi(w) = wi) are independent
and have the same distribution as X. O

Example. In the example of the monkey writing a novel, the process of
authoring is given by a sequence of independent random variables X, (w) =
wn. The event that Hamlet is written during the time [Nk + 1, N(k + 1))
is given by a cylinder set Ag. They have all the same probability. By the
second Borel-Cantelli lemma, P[A,] = 1. The set A, the event that the
Monkey types this novel arbitrarily often, has probability 1.

Remark. Lemma (2.2.4) can be generalized: given any sequence of prob-
ability spaces (R, B,P;) one can form the product space (f2,.4,P). The
random variables X;(w) = w; are independent and have the law P;. For an
other construction of independent random variables is given in [105].

Exercice. In this exercise, we experiment with some measures on 2 = N
[108].

a) The distance d(n,m) = |n — m| defines a topology O on 2 = N. What
is the Borel o-algebra A generated by this topology?

b) Show that for every A > 0

Pl = 32

neA
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is a probability measure on the measurable space (£, A) counsidered in a).
¢) Show that for every s > 1

PlA] = ((s)7'n"*

neA

is a probability measure on the measurable space (€, .A). The function

s ) =3

neQ

is called the Riemann zeta function.

d) Show that the sets A, = {n € Q| p divides n} with prime p are indepen-
dent. What happens if p is not prime.

e) Give a probabilistic proof of Euler’s formula

1 1
- H a5

f) Let A be the set of natural numbers which are not divisible by a square
different from 1. Prove

2.3 Integration, Expectation, Variance

In this entire section, (£2, .4, P) will denote a fixed probability space.

Definition. A statement S about points w € (2 is a map from 2 to {true, false}.
A statement is said to hold almost everywhere, if the set P[{w | S(w) =
false }| = 0. For example, the statement "let X,, — X almost everywhere”,
is a short hand notation for the statement that the set {z € Q| X, (z) —
X (z) } is measurable and has measure 1.

Definition. The algebra of all random variables is denoted by £. It is a
vector space over the field R of the real numbers in which one can multiply.
A elementary function or step function is an element of £ which is of the

form
n
X = Z Qy - lAi
=1

with a; € R and where A; € A are disjoint sets. Denote by S the algebra
of step functions. For X € S we can define the integral

E[X] := /QX dP = Zn:a,-P[Ai] :
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Definition. Define £' C £ as the set of random variables X, for which

sup /Y dP
YeS,y<|X|

is finite. For X € L', we can define the integral or expectation
E[X] :=/XdP= sup /YdP— sup /YdP,
veS,y<x+ YeS,y<x-

where Xt = X V0 = max(X,0) and X~ = -X V0 = max(—X,0). The
vector space L is called the space of integrable random variables. Similarly,
for p > 1 write L? for the set of random variables X for which E[| X |?] < oo.

Definition. It is custom to write L! for the space £!, where random vari-
ables X,Y for which E[|X — Y|] = 0 are identified. Unlike L, the spaces
L? are Banach spaces. We will come back to this later.

Definition. For X € £2, we can define the variance
Var[X] := E[(X - E[X])?] = E[X?] - E[X]* .
The nonnegative number
o[X] = Var[X]"/?
is called the standard deviation of X.

The names expectation and standard deviation pretty much describe al-
ready the meaning of these numbers. The expectation is the ”average”,
"mean” or "expected” value of the variable and the standard deviation
measures how much we can expect the variable to deviate from the mean.

Example. The m’th power random variable X (z) = =™ on ([0, 1], B, P) has
the expectation

1
BUX) = [ amdo= —,
0
the variance

2 2 _ 1 L = m
Var[X] =E[X ]_E[X] T am+1 B (m + 1)2 B (1+m)?(1 + 2m)

and the standard deviation o[X] = m"‘——\/m Both the expectation

as well as the standard deviation converge to 0 if m — oo.

Definition. If X is a random variable, then E[X™] is called the m’th mo-
ment of X. The m’th central moment of X is defined as E[(X — E[X])™].
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Definition. The moment generating function of X is defined as Mx(t) =
E[e!X]. The moment generating function often allows a fast simultaneous
computation of all the moments. The function

rx (t) = log(Mx(t))

is called the cumulant generating function.

Example. For X (z) = z on [0, 1] we have both

1 t X m-—1 st m
_ tr 5 (e8=1) t _ t
Mx(t) = [ e ae= S5 =30 230

m=1

and

Mx(#) = Ele™¥] = E[Z ex ZtmE[Xm]

Comparing coefficients shows E[X™] = 1/(m + 1).

Example. Let 2 = R. For given m € R,o0 > 0, define the probability
measure P[[a, b]] = f:f(ac) dzx with

1 . __f(e—m 2_
T) = [ 20
f(z) s

ThlS is a probability measure because after a change of varlables y =
(z—m)/(v20), the integral [°>_ f(z) dz becomes - NG f_ v* dy = 1. The

random variable X (z) = z on (9, A, P) is a random variable with Gaussian
distribution mean m and standard deviation o. One simply calls it a Gaus-
sian random variable or random variable with normal distribution. Lets
justify the constants m and o: the expectation of X is E[X] = [ X dP =
[5 zf(z) de = m. The variance is E[(X — m)?] = [*_1°f(z) dz = 0°
so that the constant o is indeed the standard deviation. The moment gen-
erating function of X is Mx(t) = em™t+7°*/2 The cumulant generating
function is therefore xx (t) = mt + o%¢2/2.

Example. If X is a Gaussian random variable with mean m = 0 and

standard dzeviation o, then the random variable Y = eX has the mean
E[eY] = e° /2. Proof:

1 o y—‘ﬁz d 02/2 1
[ 20 = e
V2ro? J_ oo v V2no

The random variable Y has the log normal distribution.

o0
/ egy;:2)2 dy _ 602/2
- 00

Example. A random variable X € £? with standard deviation ¢ = 0 is a
constant random variable. It satisfies X (w) = m for all w € Q.
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Definition. If X € £? is a random variable with mean m and standard
deviation ¢, then the random variable Y = (X —m)/o has the mean m = 0
and standard deviation ¢ = 1. Such a random variable is called normalized.
One often only adjusts the mean and calls X — E[X] the centered random
variable.

Exercice. The Rademacher functions r,(z) are real-valued functions on
[0,1] defined by

They are random variables on the Lebesgue space ([0,1], 4, P = dz).

a) Show that 1-2z = > ° | T;—(fz This means that for fixed x, the sequence
rn(z) is the binary expansion of 1 — 2z.

b) Verify that r,(z) = sign(sin(272"~1z)) for almost all z.

c) Show that the random variables 7,,(z) on [0, 1] are IID random variables
with uniform distribution on {-1,1 }.

d) Each r,(x) has the mean E[r,] = 0 and the variance Var(r,] = 1.

— ol —1 —

Figure. The  Figure. The  Figure. The
Rademacher Function  Rademacher Function  Rademacher Function
r1(z) r2(z) r3(z)

2.4 Results from real analysis

In this section we recall some results of real analysis with their proofs.
In the measure theory or real analysis literature, it is custom to write
[ f(z) du(z) instead of E[X] or f,g,h,... instead of X,Y, Z,..., but this
is just a change of vocabulary. What is special about probability theory is
that the measures u are probability measures and so finite.
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Theorem 2.4.1 (Monotone convergence theorem, Beppo Lévi 1906). Let X,
be a sequence of random variables in £! with 0 < X; < X, ... and assume
X = lim, o X, converges point wise. If sup, E[X,,] < oc, then X € £l
and
EX]= lim E[X,].
n—o00

Proof. Because we can replace X,, by X,, — X1, we can assume X, > 0.
Find for each n a monotone sequence of step functions X, ., € S with
Xn = sup,, Xn,m. Consider the sequence of step functions

Yo:= sup Xkn < sup Xgny1 < sup Xipt1 = Yny1 .
1<k<n 1<k<n 1<k<n+1

Since Y, < supp_, X, = X, also E[Y,] < E[X,]. One checks that
sup,, Yn = X implies sup, E[Y,] = sup,, S.y<x E[Y] and concludes

E[X]= sup E[Y]=supE[Y,] <supE[X,] < E[sup X,,] = E[X] .
veS,y<x n n n

We have used the monotonicity E[X,] < E[{X,.1] in sup, E[X,] = E[X].
O

Theorem 2.4.2 (Fatou lemma, 1906). Let X,, be a sequence of random
variables in £! with |X,| < X for some X € £. Then

E[liminf X,] < liminf E[X,,] < limsup E[X,,] < E[lim sup Xy -

n—0o0

Proof. For p > n, we have

inf X, < Xp < sup X,

m2n m2n

Therefore
- E[ iI;f Xm] <E[X,] < E[sup X,,] .
m>n m>n

Because p > n was arbitrary, we have also
i 1< i < < Ej
E[inf Xm] < inf E[X,] < sup E[Xp] < El:g Xm] -

Since Y, = infy>n Xy is increasing with sup, E[Y,] < oo and Z, =
SUp,,>, Xm is decreasing with inf, E[Z,] > —oco we get from Beppo-Levi
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theorem (2.4.1) that ¥ = sup, Y, = limsup, X, and Z = inf, Z, =
liminf, X, are in £! and

Elliminf X,,] = supE]| igf Xm] < sup ir;f E[Xy,] = liminf E[X,,)
n n m2n n m>n n

< limsupE[X,] = inf sup E[X,]
n n m>n

IN

inf E[sup Xr,] = E[limsup X5] .
n m>n n

Theorem 2.4.3 (Lebesgue’s dominated convergence theorem, 1902). Let X,
be a sequence in £ with |X,| <Y for some Y € £'. If X, — X almost
everywhere, then E[X,,] — E[X].

Proof. Since X = liminf, X,, = limsup,, X, we know that X € L£! and
from Fatou lemma (2.4.2)

E[X] = E[liminfX,] <liminf E[X,]
n n
limsup E[X,,] < E[limsup X,,] = E[X] .
n n

IA

O

A special case of Lebesgue’s dominated convergence theorem is when ¥ =
K is constant. The theorem is then called the bounded dominated conver-
gence theorem. It says that E[X,,] — E[X] if X,, < K and X, — X almost
everywhere.

Definition. Define also for p € [1,00) the vector spaces LF = {X € L | | X|P €
L'} and L% = {X € £| 3K € R X < K, almost everywhere }.

Example. For 2 = [0,1] with the Lebesgue measure P = dx and Borel
o-algebra A, look at the random variable X (z) = z®, where « is a real
number. Because X is bounded for @ > 0, we have then X € L£*. For
a < 0, the integral E[|X|P] = fol zP dz is finite if and only if ap < 1 so
that X is in £P whenever p > 1/a.

2.5 Some inequalities
Definition. A function h : R — R is called convex, if there exists for all

xo € R a linear map I(z) = az+b such that I(z¢) = h(zo) and forallz € R
the inequality I(z) < h(z) holds.
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Example. h(z) = z? is convex, h(z) = €® is convex, h(z) = z is convex.
h(z) = —z? is not convex, h(z) = #* is not convex on R but convex on
R* = [0, ).

Figure. The Jensen inequality in

the case Q@ = {u,v}, P[{u}] = he)
P[{v}] = 1/2 and with X(u) =

a, X(v) = b. The function h in h(b)
this picture is a quadratic func-

tion of the form h(zx) = (z—s)?+

t.

{
=(h(@)+h(b))/2

h(E[X])
=h((a+b)/2)

a E[X]=(a+b)/2 b

Theorem 2.5.1 (Jensen inequality). Given X € L. For any convex function
h:R — R, we have
E[r(X)] = h(E[X]),

where the left hand side can also be infinite.

Proof. Let | be the linear map defined at o = E[X]. By the linearity and
monotonicity of the expectation, we get '

h(E[X]) = I(E[X]) = El(X)] < E[A(X)] .
O

Example. Given p < q. Define h(z) = |z|?/P. Jensen’s inequality gives
E[|X|9] = E[r(|X|P)] < M(E[X|P] = E[| X |P]9/P. This implies that || X||q :=
E[|X|9"/2 < E[|X[P]"/? = ||X||, for p < g and so

LcLPcLiclt

for p > ¢q. The smallest space is £ which is the space of all bounded
random variables.

Exercice. Assume X is a nonnegative random variable for which X and
1/X are both in £'. Show that E[X +1/X] > 2.
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We have defined L£? as the set of random variables which satisfy E[|X |P] <
oo for p € [1,00) and |X| < K almost everywhere for p = oo. The vector
space L? has the semi-norm ||X||, = E[|X|P]'/? 1sp. ||X||ec = inf{K €
R||X| £ K almost everywhere }.

Definition. One can construct from LP a real Banach space LP? = LP/N
which is the quotient of L7 with N = {X € £, | [|X||, = 0 }. Without this
identification, one only has a pre-Banach space in which the property that
only the zero element has norm zero is not necessarily true. Especially, for
p = 2, the space L? is a real Hilbert space with inner product < XY >=
E[XY].

Example. The function f(z) = lg(z) which assigns values 1 to rational
numbers z on [0, 1] and the value 0 to irrational numbers is different from
the constant function g(x) = 0 in £P. But in L?, we have f = g.

The finiteness of the inner product follows from the following inequality:

Theorem 2.5.2 (Holder inequality, Holder 1889). Given p,q € [1,00] with
p'+g¢ ' =1land X € £L” and Y € L% Then XY € £' and

IXY][ < [IX]pl1Y g -

Proof. Without loss of generality, we can restrict the situation to X,Y >0

and || X||, > 0. Define the probability measure
_ XPP

E[X?]

and define u = 1; x50, Y/X?~1. Jensen’s inequality gives Q(u)? < Q(u9) so
that
E[XY) <1Xlpll1iz501Y [l < [IX[Ip]1Y ], -

A special case of Holder’s inequality is the Cauchy-Schwarz inequality

XYl < 11Xz (1Y l2 -

The semi-norm property of L7 follows from the following fact:

Theorem 2.5.3 (Minkowski inequality (1896)). Givenp € [1,00] and X,Y €
L?. Then

X + Yl <1 Xllp + Y]], -
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Proof. We use Holder’s inequality from below to get

E[IX +Y”] = E[IX||X + Y]P~'] + E[[Y]|X + YIP~'] < [|X][,C + |[Y1pC ,
where C = ||| X + Y|P~!||, = E[|X + Y|?]'/ which leads to the claim. [

Definition. We use the short-hand notation P[X > ¢] for P[{w € 2 | X(w) =

c }.

Theorem 2.5.4 (Chebychev-Markov inequality). Let h be a monotone func-
tion on R with h > 0. For every ¢ > 0, and h(X) € L' we have

h(c) - PIX > ¢ < E[A(X)].

Proof. Integrate the inequality h(c)1x>. < h(X) and use the monotonicity
and linearity of the expectation. O

Figure. The proof of the
Chebychev-Markov inequality in
the case h(x) = . The left hand
side h(c)-P|X > | is the area of
the rectangles {X > ¢} x [0, h(z)]
and E[h(X)] = E[X] is the area
under the graph of X.

Example. h(z) = |z| leads to P[|X| > ¢ < [|X][1/c which implies for
example the statement

E[X[|=0=P[X=0]=1.

Exercice. Prove the Chernoff bound
P[X > C] < infi>g e "My (1)

where My (t) = E[e*] is the moment generating function of X.
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An important special case of the Chebychev-Markov inequality is the Cheby-
chev inequality:

Theorem 2.5.5 (Chebychev inequality). If X € £2, then

Var[X]

PIIX - BlX)| 2 d <

Proof. Take h(z) = z? and apply the Chebychev-Markov inequality to the
random variable Y = X — E[X] € £? satisfying h(Y) € L. O

Definition. For X,Y € £? define the covariance
Cov[X,Y]:= E[(X - EX])(Y - E[Y])] = E[XY] - E[X|E[Y].

Two random variables in £? are called uncorrelated if Cov(X,Y]=0.

’

Example. We have Cov[X, X] = Var[X] = E[(X — E[X])?] for a random
variable X € £2. o

Remark. The Cauchy-Schwarz-inequality can be restated in the form
|Cov[X,Y]| < o[X]o[Y]

Definition. The regression line of two random variables X,Y is defined as
y =az + b, where

_ Cov[X,Y]
vyt E[Y] - aE[X].

IfQ={1,...,n} is a finite set, then the random variables X,Y define the
vectors

X =(X1),....,X(n), Y =(Y(1),...,Y(n)
or n data points (X (7),Y () in the plane. As will follow from the proposi-

tion below, the regression line has the property that it minimizes the sum
of the squares of the distances from these points to the line.
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Figure. Regression line com-
puted from a finite set of data

points (X (i), Y (7).

Example. If X,Y are independent, then a = 0. It follows that b = E[Y].
Example. If X =Y, then a =1 and b = 0. The best guess for Y is X.

Proposition 2.5.6. If y = az + b is the regression line of of X,Y, then the
random variable Y = aX + b minimizes Var[Y — Y] under the constraint
E[Y] = E[Y] and is the best guess for Y, when knowing only E[Y] and
Cov[X,Y]. We check Cov[X,Y] = Cov[X,Y].

Proof. To minimize Var[aX+b—Y] under the constraint E[aX+b—Y] = 0is
equivalent to find (a,b) which minimizes f(a,b) = E[(aX + b — Y)?] under
the constraint g(a,b) = E[aX + b — Y] = 0. This least square solution
can be obtained with the Lagrange multiplier method or by solving b =
E[Y]—aE[X] and minimizing h(a) = E[(aX -Y -E[aX -Y])?] = ¢*(E[X?]-
E[X]?)—2a(E[XY]-E[X]E[Y]) = a*Var[X]—2aCov[X, Y]. Setting h'(a) =
0 gives a = Cov[X,Y]/Var[X]. O

Definition. If the standard deviations ¢[X],o[Y] are both different from
zero, then one can define the correlation coefficient

Cov[X,Y]

Corr[X,Y] = X [o[Y]

which is a number in [—1,1]. Two random variables in £? are called un-
correlated if Corr[X,Y] = 0. The other extreme is |Corr[X,Y]| = 1, then
Y = aX + b by the Cauchy-Schwarz inequality.

Theorem 2.5.7 (Pythagoras). If two random variables X,Y € £? are
independent, then Cov[X,Y] = 0. If X and Y are uncorrelated, then
Var[X + Y] = Var[X] + Var[Y].
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Proof. We can find monotone sequences of step functions

n n
Xn=) aila, > X ,Y,=)> B;-1g, —-Y.
i=1

i=1

We can choose these functions in such a way that A; € A = o(X) and
Bj € B=0(Y). By the Lebesgue dominated convergence theorem (2.4.3),
E[X,] — E[X] and E[Y,] — E[Y] almost everywhere. Compute X, -
Y, = EZ]‘:I a;Bj1a,nB;. By the Lebesgue dominated convergence theo-
rem (2.4.3) again, E[X,,Y,] — E[XY]. By the independence of XY we
have E[X,Y,] = E[X,,] - E[Y,] and so E[XY] = E[X|E[Y] which implies
Cov[X,Y] = E[XY]-E[X]-E[Y]=0.

The second statement follows from

Var[X + Y] = Var[X] + Var[Y] + 2 Cov[X,Y] .
]

Remark. If ) is a finite set, then the covariance Cov[X, Y] is the dot prod-
uct between the centered random variables X — E[X] and Y — E[Y], and
o[X] is the length of the vector X — E[X] and the correlation coefficient
Corr[X,Y] is the cosine of the angle a between X — E[X] and Y — E[Y]
because the dot product satisfies @ - w = |v]|w|cos(a). So, uncorrelated
random variables X,Y have the property that X — E[X] is perpendicular
to Y — E[Y]. This geometric interpretation explains, why lemma (2.5.7) is
called Pythagoras theorem.

For more inequalities in analysis, see the classic [29, 58]. We end this sec-
tion with a list of properties of variance and covariance:

Var[X] > 0.

Var[X] = E[X?] - E[X]?.

Var[AX] = A?Var[X].

Var[X + Y] = Var[X] + Var[Y] + 2Cov[X, Y]. Corr[X,Y] € [0,1].
Cov[X, Y] = E[XY] - E[X]E[Y].

Cov[X,Y] < o[X]o[Y].

Corr[X,Y] = 1if X — E[X] = Y — E[Y]

2.6 The weak law of large numbers

Consider a sequence X1, Xo,... of random variables on a probability space
(Q, A, P). We are interested in the asymptotic behavior of the sums S, =
X1+ X2+ -+ X, for n — co and especially in the convergence of the
averages S, /n. The limiting behavior is described by ”laws of large num-
bers”. Depending on the definition of convergence, one speaks of ”weak”
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and "strong” laws of large numbers.

We first prove the weak law of large numbers. There exist different ver-
sions of this theorem since more assumptions on X,, can allow stronger
statements.

Definition. A sequence of random variables Y, converges in probability to
a random variable Y, if for all € > 0,

lim P[|Y, —Y|>¢=0.

One calls convergence in probability also stochastic convergence.

Remark. If for some p € [l,0), || X, — X|l, — 0, then X, — X in
probability since by the Chebychev-Markov inequality (2.5.4), P[|Xn—X| 2
€] < [|X — Xn[P/€P.

Exercice. Show that if two random variables X,Y € £? have non-zero
variance and satisfy [Corr(X,Y)| = 1, then Y = aX + b for some real
numbers a, b.

Theorem 2.6.1 (Weak law of large numbers for uncorrelated random vari-
ables) Assume X; € £2 have common expectation E[X;] = m and satisfy
sup,, L Y"1, Var[X;] < co. If X, are pairwise uncorrelated, then 22 — m
in probability.

Proof. Since Var[X + Y] = Var[X] + Var[Y] + 2 Cov[X,Y] and X, are
pairwise uncorrelated, we get Var[X, + Xn] = Var[X,] + Var[X,,] and by
induction Var[S,] = S_1_, Var[X,]. Using linearity, we obtain E[S,/n] =

and

n]2 ar[Sn] 1

var[32) = g 02y - i

Z Var[X,] .

The right hand side converges to zero for n — co. With Chebychev’s in-
equality (2.5.5), we obtain
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As an application in analysis, this leads to a constructive proof of a theorem
of Weierstrass which states that polynomials are dense in the space C[0, 1]
of all continuous functions on the interval [0, 1]. Unlike the abstract Weier-
strass theorem, the construction with specific polynomials is constructive
and gives explicit formulas.

Figure. Approzimation of a
function f(x) by Bernstein poly-
nomials B, Bs, B1g, Bag, Bsg.

Theorem 2.6.2 (Weierstrass theorem). For every f € C[0, 1], the Bernstein
polynomials

Bule) =31 () 2+ ey

converge uniformly to f. If f(x) > 0, then also B,(z) > 0.

Proof. For z € [0,1], let X, be a sequence of independent {0,1}- valued
random variables with mean value z. In other words, we take the proba-
bility space ({0,1}", A, P) defined by Plw, = 1] = z. Since P(S, = k] =

n - . Sa .
( k p*(1 — p)"~*, we can write Bn(z) = E[f(22)]. We estimate

Bole) = f@)] = B - @) < BACER) - f@)
20711 P12 ~ 2] > 4]

IN

v swp [f(@) - ) PIR —al <)

lz—y|<8

IA

20171 PI2 — ] >
v sw |f(@)- 1)l

[z—y|<s
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The second term in the last line is called the continuity module of f. It
converges to zero for § — 0. By the Chebychev inequality (2.5.5) and the
proof of the weak law of large numbers, the first term can be estimated
from above by

Var[Xi]
2
R
a bound which goes to zero for n — oo because the variance satisfies
Var[X;] = z(1 - z) < 1/4. O

In the first version of the weak law of large numbers theorem (2.6.1), we
only assumed the random variables to be uncorrelated. Under the stronger
condition of independence and a stronger conditions on the moments (X* €
L"), the convergence can be accelerated:

Theorem 2.6.3 (Weak law of large numbers for independent L* random
variables). Assume X; € £* have common expectation E[X;] = m and
satisfy M = sup,, || X||la < oco. If X, are independent, then S,/n — m in
probability. Even y - P[|ST" —m| > ¢ converges for all e > 0.

Proof. We can assume without loss of generality that m = 0. Because the
X, are independent, we get

E[SY] = EX; X, X.. X, .
n 1 2 3 4

11,12,13,24=1

Again by independence, a summand E[X;, X;, X;, X;,] is zero if an index
i = i) occurs alone, is E[X/] if all indices are the same and E[X?|E[X?], if
there are two pairwise equal indices. Since by Jensen’s inequality E[X?]? <
E[X}] < M we get

E[SY <nM +n(n+1)M .

Use now the Chebychev-Markov inequality (2.5.4) with h(z) = x4 to get

Sh E[(S,,/n)*
pIonzq < HE/M]
€
n+ n?
< Mg S

O

We can weaken the moment assumption in order to deal with £! random
variables. Of course, the assumptions have to be made stronger at some
other place.
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Definition. A family {X;};c; of random variables is called uniformly inte-
grable, if sup,c; E[1|x,;>z] — 0 for R — co. A convenient notation which
we will quite often use in the future is E[14X] = E[X; A] for X € £* and
Ac A

Theorem 2.6.4 (Weak law for uniformly integrable, independent L! random
variables). Assume X; € £! are uniformly integrable. If X; are indepen-
dent, then L 3" (Xm — E[Xn]) — 0in £ and therefore in probability.

Proof. Without loss of generality, we can assume that E[X,] = 0 for all
n € N, because otherwise X, can be replaced by Y,, = X,, — E[X,,]. Define
fr(t) = t1_g g, the random variables :

XP) = fr(Xn) — E[fa(Xn)], B = X, - X{P
as well as the random variables
1 — 1 o
(R — _ N xB®) R - _N vy
Sn n ; n ’ n n ; n

We estimate, using the Minkowski and Cauchy-Schwarz inequalities

1Sl < WS + TPl
<

[15$®2 + 2 sup E[Xi;|X;| > R]
1<i<n

R
< —+2supE[|X;};|Xi| > R].
Jn 250 (1X:1Xi| > R]
In the last step we have used the independence of the random variables and
E[X,(lR)] =0 to get
E[(x{)? R
1s¢z = Bl(sPyy = L& B

The claim follows from the uniform integrability assumption
sup;ey E[|Xi; | Xi| > R] — 0 for R — o0 O

A special case of the weak law of large numbers is the situation, where all
the random variables are 1ID:

Theorem 2.6.5 (Weak law of large numbers for IID L! random variables).
Assume X; € L' are IID random variables with mean m. Then S, /n—m
in £! and so in probability.
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Proof. We show that a set of 1ID £! random variables is uniformly inte-
grable: given X € L!, we have K - P[|X| > K] < ||X]|; so that P[|X]| >
K] — 0 for K — oc.

Because the random variables X; are identically distributed, P[|X;|; | X;| >
R] is independent of 7. Consequently any set of IID random variables is also
uniformly integrable. We can now use theorem (2.6.4). 0

Example. The random variable X (z) = z? on [0,1] has the expectation
m = E[X] = fol 22 dx = 1/2. For every n, we can form the sum S,/n =
(z2 + 2%+ - -+ x2)/n. The weak law of large numbers tells us that P[|Sn —
1/2| > ¢} — 0 for n — o0o. Geometrically, this means that for every € > 0,
the volume of the set of points in the n-dimensional cube for which the
distance r(z1,..,Zn) = /22 +--- + 22 to the origin satisfies \/n/2 — € <
r < y/n/2 + € converges to 1 for n — oco. In colloquial language, one
could rephrase this that asymptotically, as the number of dimensions to go
infinity, most of the weight of a n-dimensional cube is concentrated near a
shell of radius 1/ V2 ~ 0.7 times the length /n of the longest diagonal in
the cube.

Exercice. Show that if X,Y € £! are independent random variables, then
XY € £'. Find an example of two random variables X,Y € L} for which
XY ¢ L.

Exercice. a) Given a sequence p,, € [0, 1] and a sequence X, of IID random
variables taking values in {—1,1} such that P[X, = 1] = p, and P[X,, =
—1] =1 — p,. Show that

1 n
=) Xk —mx) =0
n k=1

in probability, where my = 2py — 1.

b) We assume the same set up like in a) but this time, the sequence py, is
dependent on a parameter. Given a sequence X, of independent random
variables taking values in {—1,1} such that P[X, = 1] = p, and P[X, =
—~1} = 1 — p, with p, = (14 cos[f +na])/2, where 0 is a parameter. Prove
that 1 3 X, — 0in £ for almost all §. You can take for granted the fact
that = "0 ; px — 1/2 for almost all real parameters 6 € [0, 2|

Exercice. Prove that X,, — X in Ll, then there exists of a subsequence
Y, = X,, satisfying Y, — X almost everywhere.
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Exercice. Given a sequence of random variables X,,. Show that X, con-
verges to X in probability if and only if

|Xn_Xl

E[2n A1
[1+|Xn—X|]_>0

for n — oco.

Exercice. Give an example of a sequence of random variables X,, which
converges almost everywhere, but not completely.

Exercice. Use the weak law of large numbers to verify that the volume of
an n-dimensional ball of radius 1 satisfies V, — 0 for n — oo. Estimate,
how fast the volume goes to 0. (See example (2.6))

2.7 The probability distribution function

Definition. The law of a random variable X is the probability measure p on
R defined by 1(B) = P[X~!(B)] for all B in the Borel o-algebra of R. The
measure 4 is also called the push-forward measure under the measurable
map X : Q2 —» R.

Definition. The distribution function of a random variable X is defined as
Fx(s) = p((—00,8]) =P[X < o] .

The distribution function is sometimes also called cumulative density func-
tion (CDF) but we do not use this name here in order not to confuse it
with the probability density function (PDF) fx(s) = Fi(s) for continuous
random variables.

Remark. The distribution function F is very useful. For example, if X is a
continuous random variable with distribution function F, then ¥ = F(X)
has the uniform distribution on [0, 1]. We can reverse this. If we want to pro-
duce random variables with a distribution function F, just take a random
variable Y with uniform distribution on [0, 1] and define X = F~1(Y"). This
random variable has the distribution function F because {X € [a,b] } =
{F7H(Y) € [a,0] } = {Y € F((a,d]) } = {Y € [F(a), F(b)]} = F(b) ~ F(a).
We see that we need only to have a random number generator which pro-
duces uniformly distributed random variables in [0, 1] to produce random
variables with a given continuous distribution.
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Definition. A set of random variables is called identically distributed, if
each random variable in the set has the same distribution function. It is
called independent and identically distributed if the random variables are
independent and identically distributed. A common abbreviation for inde-
pendent identically distributed random variables is IID.

Example. Let €2 = [0, 1] be the unit interval with the Lebesgue measure p
and let m be an integer. Define the random variable X (z) = z™. One calls
its distribution a power distribution. It is in £! and has the expectation
E[X] = 1/(m + 1). The distribution function of X is Fx(s) = s(!/™ on
(0,1] and Fx(s) = 0 for s < 0 and Fx(s) = 1 for s > 1. The random
variable is continuous in the sense that it has a probability density function
fx(s) = F(s) = s*/™ 1 /m so that Fx(s) = [*__ fx(t) dt.

-0.2 0.2 0.4 0.6 0.8 1 -0.2 0.2 0.4 0.6 0.8 1 1.2

Figure. The distribution function Figure. The density function
Fx(s) of X(z) = 2™ in the case fx(s) of X(z) = ™ in the case
m=2. m = 2.

Given two IID random variables X,Y with the m’th power distribution as
above, we can look at the random variables V = X+Y, W = X -Y. One can
realize V and W on the unit square Q@ = [0,1] x [0, 1] by V(z,y) = 2™ +y™
and W(z,y) = 2™ — y™. The distribution functions Fy/(s) = P[V < s] and
Fy (s) = P[V < s] are the areas of the set A(s) = {(z,y) | 2™ +y™ < 5 }
and B(s) = {(z,y) | 2™ —y™ < 5 }.
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Figure. Fy (s) is the area of the

Figure. Fy(s) is the area of the
set B(s), shown here in the case

set A(s), shown here in the case
m = 4. m=4.

We will later see how to compute the distribution function of a sum of in-
dependent random variables algebraically from the probability distribution
function Fx. From the area interpretation, we see in this case

gl/m
(s —a™)Vm dg, s€0,1],

Fu(s) = Jo
vie) {1 [(1 1—(s—z™Vm dg, se[l1,2]

= Jls—-1 )1/ m

and

~(s41)1/™ 1= (2™ — g\l/m do e [—1.0
Fw(s) = Jo (z s) z, se€[-1,0],
4 gt/m 4 fl 1—(z™ —s)t/™dz, s€l0,1]
! sl/m - S £ 1

= Sremea.

e

Figure. The function Fy(s) with Figure. The function Fyy(s) with
density (dashed) fyv(s) of the sum density (dashed) fw(s) of the dif-
of two power distributed random ference of two power distributed

variables with m = 2. random variables with m = 2.
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Exercice. a) Verify that for # > 0 the Maxwell distribution
4
fa) = S0

is a probability distribution on R* = [0, 00). This distribution can model
the speed distribution of molecules in thermal equilibrium.
a) Verify that for > 0 the Rayleigh distribution

flz) = 20ze0=

is a probability distribution on R* = [0, 00). This distribution can model
the speed distribution v/ X2 4 Y2 of a two dimensional wind velocity (X,Y),
where both X,Y are normal random variables.

2.8 Convergence of random variables

In order to formulate the strong law of large numbers, we need some other
notions of convergence.

Definition. A sequence of random variables X,, converges in probability to
a random variable X, if

P X, — X|>¢] -0

for all € > 0.

Definition. A sequence of random variables X,, converges almost every-
where or almost surely to a random variable X, if P[X,, — X] = 1.

Definition. A sequence of £P random variables X,, converges in £” to a
random variable X, if
1% — Xl — 0

for n — oo..

Definition. A sequence of random variables X, converges fast in probabil-
ity, or completely if

D> PlXn-X|>€ <o

for all € > 0.
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We have so four notions of convergence of random variables X,, — X, if the
random variables are defined on the same probability space (2, A, P). Later
we will the two equivalent but weaker notions convergence in distribution
and weak convergence, which not necessarily assume X, and X to be de-
fined on the same probability space. Lets add these two definitions also
here. We will see later, in theorem (2.13.2) that the following definitions
are equivalent:

Definition. A sequence of random variables X, converges in distribution,
if Fx, (z) — Fx(z) for all points s, where Fx is continuous.

Example. Let 2, = {1,2,...,n} with the uniform distribution P[{k}] = 1/n
and X, the random variable X,,(z) = z/n. Let X () = z on the probability
space [0, 1] with probability P[[a,b)] = b—a. The random variables X,, and
X are defined on a different probability spaces but X,, converges to X in
distribution for n — oo.

Definition. A sequence of random variables X,, converges in law to a ran-

dom variable X, if the laws u, of X, converge weakly to the law p of
X.

Remark. In other words, X, converges weakly to X if for every continuous
function f on R of compact support, one has

/ £(@) din(z) — / £(z) du(z) .
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Proposition 2.8.1. The next figure shows the relations between the different
convergence types.

0) In distribution = in law
Fx,(s) — Fx(s), Fx cont. at s

T

1) In probability
P(|X, - X| > €] — 0,Ve > 0.

/ N

2) Almost everywhere 3) In LP
PX, - X]=1 Xn—X|lp =0

T

4) Complete
2Pl Xn — X| > € < o0,Ve>0

Proof. 2) = 1): Since

{Xn =X} =U N {1Xn ~ X < 1/k}
k m n>m
"almost everywhere convergence” is equivalent to

1=P[J M {IXn - X| <

m n>m

|

0= lim P[() (1%, - X| < 1}

n>m
for all k. Therefore
Pl Xm - X| 2] < PV {|Xa - X|>€}] >0
n>m
for all € > 0.
4) = 2): The first Borel-Cantelli lemma implies that for all € > 0

P[|X, — X| > ¢, infinitely often] = 0 .
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We get so for ¢, — 0

P[U | Xn—X| > €, infinitely often] < ZP[an—Xl > ¢, infinitely often]

from which we obtain P[X, — X] = L.
3) = 1): Use the Chebychev-Markov inequality (2.5.4), to get

_ p
P(Xn - X| > ¢ < 2Xn = XPT
€P
a

Example. Here is an example of convergence in probability but not almost
everywhere convergence. Let ([0,1],A,P) be the Lebesgue measure space,
where A is the Borel o-algebra on [0, 1]. Define the random variables

Xn,k = 1[k2—n,(k+1)2—n], n= 1,2, ey k= 0,. . .,2” —-1.

By lexicographical ordering X; = X1,1, X2 = X21,X3 = Xo2,X4 =
Xa3,... we get a sequence Xn, satisfying

lim inf X, (w) = 0,limsup X,(w) =1

n—oo n-—00
but P{| X, x >¢€ <27
Example. And here is an example of almost everywhere but not £ con-
vergence: the random variables
Xn = 2111[0‘2_"]

on the probability space ([0,1}, A, P) converge almost everywhere to the
constant random variable X = 0 but not in £P because || Xn||p = onp-1)/p,

With more assumptions other implications can hold. We give two examples.

Proposition 2.8.2. Given a sequence X, € L™ with || Xnlloo < K for all n,
then X,, — X in probability if and only if X, — X in ch

Proof. (i) P[|X| < K) = 1. Proof. For k € N,
1
P[X| > K+%] <P[X - Xa| > 7] = 00— o0
so that P[|X| > K + %] = 0. Therefore

P{X|> K] =P _J{IX| > K+% }=0.
k
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(ii) Given € > 0. Choose m such that for all n > m

P|| X, X|>—]<3K

Then, using (4)
ElXn - XI) = E[(Xn~X[;|X0 = X| > €] + E[(|Xn — X|; | Xn — X| < ¢]

2KP[|Xn—X|>§]+§§e.

IA

O

Definition. A family C C £! of random variables is called uniformly inte-
grable, if
Jim sup E[ljx)5g] — 0
—* xeC
for all X € C. The next lemma was already been used in the proof of the
weak law of large numbers for IID random variables.

Lemma 2.8.3. Given X € £! and ¢ > 0. Then, there exists K > 0 with
E[|X];|X|> K] <e.

Proof. Given € > 0. If X € £, we can find 6 > 0 such that if P[4] < 4,
then E[|X|, A] < e. Since KP[IXI > K| < E[|X]], we can choose K such
that P[|X| > K) < 4. Therefore E[|X|;|X| > K] < e. O

The next proposition gives a necessary and sufficient condition for £! con-
vergence.

Proposition 2.8.4. Given a sequence random variables X,, € £!. The fol-
lowing is equivalent:

a) X, converges in probablllty to X and { X, }nen is uniformly integrable.
b) X, converges in L' to X.

Proof. a) = b). Define for K > 0 and a random variable X the bounded
variable

XK = x. 1 K<x<k)t+ K- Lix>ky— K-I{X<_K}.

By the uniform integrability condition and the above lemma (2.8.3), w
can choose K such that for all n,

E| X - X, < % E|X®) - X|) <

Ll m
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Since | X0 — XB)| < |X,, — X|, we have x5O XK in probability.
We have so by the last proposition (2.8.2) x5O L x&) in £ so that for
n>m E[| X — XH)|] < ¢/3. Therefore, for n > m also

B[} X, — X[} < E[[Xn — X{O|| + EIXO - X®) | + B|X®) - X[ <e.

a) = b). We have seen already that X, — X in probability if || X — X1 —
0. We have to show that X,, — X in £! implies that X, is uniformly
integrable.
Given € > 0. There exists m such that E[| X, — X|] < ¢/2 for n > m. By
the absolutely continuity property, we can choose J > 0 such that P[A] <€
implies

E[|Xnl; Al < 6,1 <n<m,E[|X|;A] <e/2.
Because X, is bounded in £, we can choose K such that K ! sup,, E[|Xa[] <
& which implies E[|X,,| > K] < . For n > m, we have therefore

EHXn|7 |an > K] < EHXI, IXn| > K] +E[|X - Xn” <e.

Exercice. a) P[sup;s, |Xx — X| > ¢] — 0 for n — oo and all € > 0 if and
only if X,, — X almost everywhere.
b) A sequence X, converges almost surely if and only if
lim Plsup |Xnik — Xn| > €/ =0
>1

n—00 k

for all € > 0.

2.9 The strong law of large numbers

The weak law of large numbers makes a statement about the stochastic

convergence of sums
it_ _ X 1+ + Xn
n n
of random variables X,,. The strong laws of large numbers make analog

statements about almost everywhere convergence.

The first version of the strong law does not assume the random variables to
have the same distribution. They are assumed to have the same expectation
and have to be bounded in £*.

Theorem 2.9.1 (Strong law for independent L'-random variables). Assume
X,, are independent random variables in £* with common expectation
E[X,] = m and for which M = sup, || Xn|l§ < co. Then S, /n — m almost
everywhere.
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Proof. In the proof of theorem (2.6.3), we derived

Sn 1
P[|7—m| > €] S2MW'

This means that S, /n — m converges completely. By proposition (2.8) we
have almost everywhere convergence. |

Here is an application of the strong law:

Definition. A real number z € [0, 1] is called normal to the base 10, if its
decimal expansion x = z3z2... has the property that each digit appears
with the same frequency 1/10.

Corollary 2.9.2. (Normality of numbers) On the probability space
([0,1], B,Q = dz), Lebesgue almost all numbers z are normal.

Proof. Define the random variables X,(x) = ,, where z, is the n’th
decimal digit. We have only to verify that X, are IID random variables. The
strong law of large numbers will assure that almost all z are normal. Let Q =
{0,1,...,9 }N be the space of all infinite sequences w = (w1,w2,ws, ... ).
Define on  the product o-algebra A and the product probability measure
P. Define the measurable map S(w) = Y oo, wx/10F = z from Q to [0, 1].
It produces for every sequence in §2 a real number z € [0,1]. The integers
wy, are just the decimal digits of z. The map S is measure preserving and
can be inverted on a set of measure 1 because almost all real numbers have
a unique decimal expansion.

Because Xp,(z) = Xn(S(w)) = Yn(w) = wy, if S(w) = 2. We see that X,
are the same random variables than Y;,. The later are by construction IID
with uniform distribution on {0,1,...,9 }. O

Remark. While almost all numbers are normal, it is difficult to decide
normality for specific real numbers. One does not know for example whether
m—3=0.1415926... of \/§ —1=0.41421... is normal.

The strong law for IID random variables was first proven by Kolmogorov
in 1930. Only much later in 1981, it has been observed that the weaker
notion of pairwise independence is sufficient [25].

Theorem 2.9.3 (Strong law for pairwise independent L' random variables).
Assume X, € L are pairwise independent and identically distributed ran-
dom variables. Then S, /n — E[X] almost everywhere.
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Proof. We can assume without loss of generality that X,, > 0 (because we
can split X, = X;' + X~ into its positive X;F = X, V0 = max(X,,0) and
negative part X~ = —X V 0 = max(—X,0). Knowing the result for X
implies the result for X,.).

Define fgr(t) =t - 1|_g,g), the random variables X = fr(Xp) and Y, =

(") 25 well as

(i) It is enough to show that T}, — E[T,,] — 0.
Proof. Since E[Y,] — E[X;] = m, we get E[T,] —» m. Because

Y PYa#X,] < Y PXp>n]=3 P[X;>n]

n>1 n>1 n>1
= > Y PlXn €k k+1]]
n>1k>n
= Y k-PXi€lkk+1] <E[X)]<oo,
k>1

we get by the first Borel-Cantelli lemma that P[Y,, # X,,, infinitely often] =
0. This means T,, — S, — 0 almost everywhere, proving E[S,,] — m.

(if) Fix a real number o > 1 and define an exponentially growing subse-
quence k, = [a"] which is the integer part of a™. Denote by u the law of
the random variables X,,. For every € > 0, we get using Chebychev inequal-
ity (2.5.5), pairwise independence for k,, = [@"] and constants C' which can
vary from line to line:

o x

Y PlTk, —Elli,]l2d < Y

n=1 n=1

k
1 n
= W E Var [Ym]

" m=1

= E%ZVar[Ym] Z kiz
m=1

n:k,>m

ar[Tk,]
€2k2

1 C
S(l) 6_2 Z Var[Ym] ’TF
m=1

IA

= 1
C ) —E]]
m=1

In (1) we used that with k, = [0"] one has 3, -, k3! < C-m™2
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Lets take some breath and continue, where we have just left off:

i P(|Tk, —E[Tk,]| >¢ < C i #E[Y,i]

n=1

oo 1 m—1 I+1

< C — / z? du(z)
2
o 00 1 I+1 2‘

= C’Z Z m2/l z° du(z)
=0 m=l+1
oo oo I+1

< T du(z)
I= 0m—l+1

141
@ oS [T eain
1=0 71
< C- E[X1] <0oo.
In (2) we used that 3, m2<C-(1+1)7!

We have now proved complete (=fast stochastic) convergence. This implies
the almost everywhere convergence of Ty, — E[T%,] — 0.

(iii) So far, the convergence has only be verified along a subsequence k.
Because we assumed X,, > 0, the sequence U,, = E?zl Y,, = nT}, is mono-
tonically increasing. For k € [kp,, kmt1], we get therefore

km Ukw _ Ukn _ Un
km+1 km B km+1 n

Ukmia _ kmi1 Ubkmia

< <

km - km km+ 1

and from lim,_,. T, = E[X1] almost everywhere,
éE[Xl] < liminf T, <limsup7, < aE[X]]

follows. 0

Remark. The strong law of large numbers can be interpreted as a statement
about the growth of the sequence }";_; X,. For E[X;] = 0, the convergence
L% %=1 Xn — 0 means that for all e > 0 there exists m such that for n > m

|ZXn| <en.
k=1

This means that the trajectory > 7_, X, is finally contained in any arbi-
trary small cone. In other words, it grows slower than linear. The exact
description for the growth of 3"}'_; X,, is given by the law of the iterated
logarithm of Khinchin which says that a sequence of IID random variables
Xn with E[X,] = m and o(X,,) = 0 # 0 satisfies

lim sup S— = +1, l1m1nfS— =-1,
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with A, = v/202nloglogn.

Remark. The IID assumption on the random variables can not be weakened
without further restrictions. Take for example a sequence X, of random
variables satisfying P[X,, = +2"] = 1/2. Then E[X,] = 0 but even S,/n
does not converge.

Exercice. Let X; be IID random variables in £2. Define Y} = % E’.“ 1 X
What can you say about S, = 371" | ¥;?

2.10 Birkhoff’s ergodic theorem

In this section we fix a probability space (£2,.4,P) and consider sequences
of random variables X,, which are defined dynamically by a map T on Q
by

Xn(w) = X(T"(w))

where T™(w) = T(T(...T(w))) is the n’th iterate of w. This can include
as a special case the situation that the random variables are independent,
but it can be much more general. Similarly as martingale theory covered
later in these notes, ergodic theory is not only a generalization of classical
probability theory, it is a considerable extension of it, both by language as
by scope.

Definition. A measurable map T :  —  from the probability space onto
itself is called measure preserving, if P[T1(A)] = P[4] for all A € A. The
map T is called ergodic if T(A) = A implies P[4] = 0 or P[4] = 1. A
measure preserving map 7 is called invertible, if there exists a measurable,
measure preserving inverse T~ ! of T. An invertible an measure preserving
map T is also called an automorphism of the probability space.

Example. Let Q2 = {|z] =1 } C C be the unit circle in the complex plane
with the measure P[Arg(z) € [a,b]] = (b—a)/(2n) for 0 < a < b < 27w
and the Borel o-algebra A. If w = €2™ is a complex number of length 1,
then the rotation T'(z) = wz defines a measure preserving transformation

on (2, B,P). It is invertible with inverse T~1(2) = z/w.

Example. The transformation 7'(z) = 22 on the same probability space as
in the previous example is also measure preserving. Note that P[T(A4)] =
2P[A] but P[T~1(A)] = P[A] for all A € B. The map is measure preserving
but it is not invertible.

Remark. T is ergodic if and only if for any X € £? the condition X(T) = X
implies that X is constant almost everywhere.
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Example. The rotation on the circle is ergodic if a is irrational. Proof:
with z = €2™® one can write a random variable X on Q as a Fourier series
f(2) = X2 _ . an2™ which is the sum fo+ f1+f—, where f} = ooy Gn 2™
is analytic in |2| < 1 and f- = Y oo | anz™" is analytic in |2| > 1 and fo is
constant. By doing the same decomposition for f(T(z)) = Y.~ _ ., anw™2",
we see that fi = Y00 | anz™ = Y oo, anw™2"™. But these are the Taylor
expansions of f = f+(T) and so a, = anw™. Because w™ # 1 for irrational
a, we deduce a, = 0 for n > 1. Similarly, one derives a, = 0 for n < —1.

Therefore f(z) = ag is constant.

Example. Also the non-invertible squaring transformation T(z) = =% on

the circle is ergodic as a Fourier argument shows again: T' preserves again
the decomposition of f into three analytic functions f = f- + fo + f+
so that f(T(2)) = 350 __ an2®" = 300 anz™ implies 3,7, an2" =
Zf;l a,,2". Comparing Taylor coefficients of this identity for analytic func-
tions shows a, = 0 for odd n because the left hand side has zero Taylor
coefficients for odd powers of z. But because for even n = 2!k with odd
k, we have a, = agy = ag-1; = -+ = ax = 0, all coefficients ax = 0 for
k > 1. Similarly, one sees ax = 0 for k < —1.

Definition. Given a random variable X € L, one obtains a sequence of
random variables X,, = X(T") € £ by X(T™)(w) = X (T™w). Define Sp =0
and S, = S 7_ X(T%).

Theorem 2.10.1 (Maximal ergodic theorem of Hopf). Given X € L', the
event A = {sup,, S, > 0 } satisfies

E[X; Al =E[14X]>0.

Proof. Define Z, = maxo<k<n Sk and the sets A, = {Z, > 0} C An;l.
Then A = J,, An. Clearly Z,, € LY. For 0 < k < n, we have Z,, > Sk and
s0 Zn(T) > Sk(T) and hence

Za(T) + X > Sks1 -

By taking the maxima on both sides over 0 < k < n, we get

Zo(T)+ X > max Sk .
1<k<n+1

On A, = {Z, > 0}, we can extend this to Z,(T) + X > maxj<k<n+1 Sk 2
maxo<k<n+1 Sk = Zn41 > Zn SO that on A4,
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Integration over the set A, gives
E[X§ An] 2 E[Zm An] - E[Zn(T)§ An] .

Using (1) this inequality, the fact (2) that Z, = 0 on X \ A,, the (3) in-
equality Z,(T) > S,(T) > 0 on A, and finally that T is measure preserving
(4), leads to
E[X; An] 2(1) E[Zn; An] - E[Zn(T), An]
=@ ElZn] — E[Zn(T); A
>@3) E[Zn = Za(T)) =(4 0

for every n and so to E[X; A] > 0. O

Theorem 2.10.2 (Ergodic theorem of Birkhoff, 1931). For any X € £! the

time average
=—=-§}MT

converges almost everywhere to a T-invariant random variable X satisfying
E[X] = E[X]. Especially, if T is ergodic, then S,/n converges to E[X].

Proof. Define X = limsup,,_, Sny X = liminf,_o0 S, . We get X =
X(T) and X = X(T) because

n+1§ _§( )=

n
(i) X =X.
Define for o < 8 € R the sets Aq g = {X < B,a < X}. Because {X <

X} = Uacpa 3cq Aa,p, it is enough to show that P[A, g] = 0 for rational
a < 3. Define

A = {sup(Sp —na) >0} = {sup(Sp, —a) >0}.

Because A, 3 C A and A, g is T-invariant, we get from the maximal ergodic
theorem E[X — a, Ay 5] > 0 and so

E[X, Aa,g] 2 - P[Aa,ﬁ] .

—X gives
0 follows.

Replacing X, a, B with —X, -3, —a and using - X = - X, =X
E[X; Aqa,g] < B-P[Aq g] and because 8 < a, the claim P[4, g]
@Xec. _

|Sn| < |X]|, and S, converges point wise to X = X and X € L!. Lebesgue’s
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dominated convergence theorem gives X € L.

(iii) E[X] = E[X].

Define the sets By, = {X € [£, &)} for k € Z,n > 1. Define for € > 0,
Y=X- % + €. Using the maximal ergodic theorem, we get E[Y’; Bi,n] > 0.
Because € > 0 was arbitrary,

k
E[X; Bxn] > =
n

With this inequality

— k+1 1
EX, Bun] < ~——P[Byn] < ~PlBinl + EIX; By,

Summing over k gives

BX] < -+ E[X]

and because n was arbitrary, E[X] < E[X]. Doing the same with —X and
using (z), we end with

E[-X] = E[=X] < E[°X] < E[- X].

Corollary 2.10.3. The strong law of large numbers holds for IID random
variables X, € £1.

Proof. Given a sequence of IID random variables X,, € L. Let p be the
law of X,,. Define the probability space Q = (R%, A, P), where P = uZ is
the product measure. If T : @ — Q, T(w)y = wp+1 denotes the shift on 2,
then X,, = X(T™) with with X(w) = wo. Since every T-invariant function
is constant almost everywhere, we must have X = E[X] almost everywhere,
so that S, /n — E[X] almost everywhere. O

Remark. While ergodic theory is closely related to probability theory, the
notation in the two fields is different. The reason is that the origin of
the theories are different. One usually writes (X, .4, m) for a probability
space. An example of different language is also that ergodic theorists do
not use the word “random variables” X but speak of ”functions” f. Good
introductions to ergodic theory are (36, 13, 8, 77, 54, 107).



72 Chapter 2. Limit theorems
2.11 More convergence results

We mention now some results about the almost everywhere convergence of
sums of random variables in contrast to the weak and strong laws which
were dealing with averaged sums.

Theorem 2.11.1 (Kolmogorov’s inequalities). a) Assume X € £2 are inde-
pendent random variables. Then

P[ sup [Si — EISk]| > €] < =Var[S,] .
1<k<n €

b) Assume X € £L* are independent random variables and Xnlloo < R.

Then
(R+¢€)?

Pl sup [Sx —E[Si]|>€>1~ ——2t— .
[lgkgn[ g Sl 2 42 Zk:l Var[X]

Proof. We can assume E[X}] = 0 without loss of generality.
a) For 1 < k < n we have

8% — Sp = (Sn — Sk)? +2(Sn — Sk)Sk = 2(S, — Sk)Sk

and therefore E[S2; Ax] > E[S% Ay for all A, € o(Xy,...,Xx) by the
independence of S, — S, and S;. The sets 4; = {IS1| = €}, Agyr =
{ISk+1| = €, max;<i<k [Si] < €} are mutually disjoint. We have to estimate
the probability of the events

n
B, {lmax |Sk| > €} 1.¢L=J1 Ak

<k<n

We get

E[S7] > E[S%; B = XR:E[S,?; Ay] > Xn: E[S?; Ak > €2 XH:P[A,C] = €’P[B,)] .
k=1 k=1 k=1
b)
E[S%; Ba] = E[S] — E[S BS] > E[S7] ~ €2(1 ~ P[B,]) .

- On Ag, [Sk-1] < € and |Sk| < |Sk-1] + | Xk| < € + R holds. We use that in
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the estimate

E[S; Ba] = kzn: E[SE + (Sn — Sk)% Akl
= kn [Sk,Ak]+ZE[ Sn — Sk)?; Ak)
< ZP[Ak +ZP [Ax) Z Var[X;]
< P[B ]((6+R )> +E[S7]) -
so that

E[S2] < P[Ba)((e + R)? + E[S2]) + € — €°P[B,] .

and so

E[S7] - € (e+R) (e+R)?
PIBh 2 Rz + B =@ 2 G RP+ESE -2 - ES3

|

Remark. The inequalities remain true in the limit n — oo. The first in-
equality is then

1 o0
[sup|Sk —E[Sk]] > €] —2 Z Var[Xg] .
k=1

Of course, the statement in @) is void, if the right hand side is infinite. In
this case, however, the inequality in b) states that supy |Sx — E[Sk]| > €
almost surely for every € > 0.

Remark. For n = 1, Kolmogorov’s inequality reduces to Chebychev’s in-
equality (2.5.5)

Lemma 2.11.2. A sequence X, of random variables converges almost ev-
erywhere, if and only if

lim Plsup |Xnik — Xn| > € =0

n—o0 k>

for all e > 0.

Proof. This is an exercise. W]
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Theorem 2.11.3 (Kolmogorov). Assume X, € 2 are independent and
Y meq Var[X,] < co. Then

converges almost everywhere.

Proof. Define Y,, = — E[X,] and S, = 3}, Yi. Given m € N. Apply
Kolmogorov’s mequahty to the sequence Y, % to get
1 o0
Plsup [S, — Sml 2 <5 Y E[XZ -0

2
€
nzm k=m+1

for m — oo. The above lemma implies that S, (w) converges. O

Figure. We sum up indepen-
dent random variables X
which teake wvalues %} with
equal probability. According to

theorem (2.11.3),the process

n—Z(Xk— [Xk]) =i f

converges if
oo

Y EXE =)
k=1

converges. This is the case if o >
1/2. The picture shows some ez-
periments in the case o = (.6.

The following theorem gives a necessary and sufficient condition that a
sum S, = Ek 1X k converges for a sequence X,, of independent random
variables.

Definition. Given R € R and a random variable X , we define the bounded
random variable
X =1xrX .
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Theorem 2.11.4 (Three series theorem). Assume X, € £ be independent.
Then 5 -, X, converges almost everywhere if and only if for some R > 0
all of the following three series converge:

ipnxkpm < o0, (2.4)
k=1

fle[X,iR)n < o0, (2.5)
k=1

iVar[X,(cR)] < 00. (2.6)

=
I
—

Proof. "=" Assume first that the three series all converge. By (3) and
Kolmogorov’s theorem, we know that Y 5o, X ,ER) - E[X ,ER) ] converges al-
most surely. Therefore, by (2), > re; X,(CR) converges almost surely. By
(1) and Borel-Cantelli, P[X; # X,(CR) infinitely often) = 0. Since for al-
most all w, X ,(CR) (w) = Xg(w) for sufficiently large k and for almost all

Wy > per X (B)(4) converges, we get a set of measure one, where > 7 X
converges.

<" Assume now that >~ , X, converges almost everywhere. Then X —
0 almost everywhere and P[| Xk| > R, infinitely often) = 0 for every R > 0.
By the second Borel-Cantelli lemma, the sum (1) converges.

The almost sure convergence of Y o, X, implies the almost sure conver-

gence of 3 o0 X5 since P[|Xk| > R, infinitely often) = 0.

Let R > 0 be fixed. Let Y; be a sequence of independent random vari-
ables such that Y, and X ,SR) have the same distribution and that all the
random variables X ,ER), Y, are independent. The almost sure convergence
of 3%, X implies that of 300, X{® _ ¥;. Since BX® - ¥3] = 0
and P[|X ,(CR) — Yi| < 2R) = 1, by Kolmogorov inequality b), the series
T, =" X® _; satisfies for all € > 0

(R+¢€)?
© varlx{™ -vi]

P[Sup iTn-Hc - Tn| > 6] >1-
k>1

Claim: >"77,; Var[X(F) — ¥;] < co.
Assume, the sum is infinite. Then the above inequality gives P[supys [Tn+x—
T,| > €] = 1. But this contradicts the almost sure convergence of Y ;- ; X ,(CR) -
Y% because the latter #nplies by Kolmogorov inequality that Plsupy>q |Sntx—
S,| > €] < 1/2 for large enough n. Having shown that > .2, (Var[X ,(CR) -
Y:)] < oo, we are done because then by Kolmogorov’s theorem (2.11.3),
the sum ¥ 5o ; X ,ER) - E[X ,(CR)] converges, so that (2) holds.

O
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Figure. A special case of the
three series theorem is when X &
are uniformly bounded X, <
R and have zero expectation
E[X%] = 0. In that case, almost
everywhere convergence of S, =
ko1 Xk 45 equivalent to the
convergence of > po ) Var[X].
For example, in the case

and o = 1/2, we do not have
almost everywhere convergence
of Sn, because Y oo Var[Xy] =
Cker & = 0o

Definition. A real number o € R is called a median of X € £ if PX <
@] > 1/2 and P[X > a] > 1/2. We denote by med(X) the set of medians
of X.

Remark. The median is not unique and in general different from the mean.
It is also defined for random variables for which the mean does not exist.

Propeosition 2.11.5. (Comparing median and mean) For Y € £2. Then every
a € med(Y) satisfies
la — E[Y]| < V20[Y].

Proof. For every 8 € R, one has

B < o~ 8% min(Ply > ol PIY < al) < B[(Y — 9.

Now put 8 = E[Y]. O

Theorem 2.11.6 (Lévy). Given a sequence X,, € £ which is independent.
Choose oy € med(S; — Si). Then, for all n € N and all € > 0

P[lrsnlggcn |Sn + an k| > €] < 2P[S, > ] .
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Proof. Fix n € N and € > 0. The sets

Ay ={S1+an1 > €}, Apy1 = {lrglagck(sn + Qnyt) < € Sk41 + An k1 > €}

for 1 < k < n are disjoint and | J_, Ax = {maxi<i<n(Sk + ank) > €}
Because {S,, > € } contains all the sets Ay as well as {S, — Sk > a x} for
1 < k < n, we have using the independence of o(Ax) and o(S, — Sk)

PS> > S PHSw— Sk > ank}N A

P[{Sn — Sk > anx }IP[Ak]

3

v

Il
NI NG ERANg
I N ERINgE

fac)
PN
=,

1
n

= %P[U Ag]

k=1

1
= = > .
2P[1m§’?%cn(5n + an k) > €

Applying this inequality to —X,, we get also P[-Sp, — anm > —€] >
2P[-S, > —¢] and so

>
P[1r§n/?%(n |Sn + ankl > € <2P[S, > ¢].

Corollary 2.11.7. (Lévy) Given a sequence X,, € L of independent random
variables. If the partial sums S, converge in probability to S, then S,
converges almost everywhere to S.

Proof. Take ay, € med(S; — Sk). Since S, converges in probability, there
exists m; € N such that |ogx| < €/2 for all m; < k < [ In addition,
there exists mz € N such that sup,,51 P[|Sntm — Sm| > €/2] < €/2 for all
m > mo. For m = max{ml,mg}, we have for n >1

P[II_<r_lla§Xn ISH—m - Sm| > f] < P[fgzagxn |Sl+m — S + an+m,l+m| > 6/2] .

The right hand side can be estimated by theorem (2.11.6) applied to Xn1m
with .

Now apply the convergence lemma (2.11.2). 0
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Exercice. Prove the strong law of large numbers of independent but not
necessarily identically distributed random variables: Given a sequence. of
independent random variables X, € £? satisfying E[X,]|=m.If

E:Var[Xk]/lc2 <00,
k=1

then S,,/n — m almost everywhere.
Hint: Use Kolmogorov’s theorem for Yy = Xy /k.

Exercice. Let X, be an IID sequence of random variables with uniform
distribution on [0, 1]. Prove that almost surely

Hint: Use Var([], X;] = [TE[X?] — []E[X;])? and use the three series theo-

rem.

2.12 Classes of random variables

The probability distribution function Fx : R — [0, 1] of a random variable
X was defined as

Fx(z) =PX <1z,

where P[X < z] is a short hand notation for P[{w € Q| X (w) < z }. With
the law px = X*P of X on R has Fx(z) = [°_ du(z) so that F is the
anti-derivative of x. One reason to introduce distribution functions is that
one can replace integrals on the probability space {2 by integrals on the real
line R which is more convenient.

Remark. The distribution function Fx determines the law ux because the
measure v((—00,a]) = Fx(a) on the m-system I given by the intervals
{(~00,a]} determines a unique measure on R. Of course, the distribution
function does not determine the random variable itself. There are many
different random variables defined on different probability spaces, which
have the same distribution.
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Proposition 2.12.1. The distribution function Fx of a random variable is

a) non-decreasing,
b) Fx(—oc) =0, Fx{o0) =1
c) continuous from the right: Fx(z 4+ h) = Fx.

Furthermore, given a function F with the properties a), b), ¢), there exists
a random variable X on the probability space (€2,.A,P) which satisfies
Fx =F.

Proof. a) follows from {X <z} C{X <y} forz <y.b)P{X < -n}] -

0and P[{X <n}] > 1.¢c) Fx(z+h)—Fx =Pz < X <z +h]— 0 for

h—0.

Given F, define = R and A as the Borel o-algebra on R. The measure

P[(—00,a]] = Fla] on the m-system T defines a unique measure on (£, A).
]

Remark. Every Borel probability measure p on R determines a distribution
function Fx of some random variable X by

The proposition tells also that one can define a class of distribution func-
tions, the set of real functions F' which satisfy properties a),b), c).

Example. Bertrands paradox mentioned in the introduction shows that the
choice of the distribution functions is important. In any of the three cases,
there is a distribution function f(z,y) which is radially symmetric. The
constant distribution f(z,y) = 1/7 is obtained when we throw the center of
the line into the disc. The disc A, of radius r has probability P[4,] = r?/.
The density in the 7 direction is 2r/7. The distribution f(z,y) = 1/r =
1//z2 + y? is obtained when throwing parallel lines. This will put more
weight to center. The probability P[4,] = /7 is bigger than the area of
the disc. The radial density is 1/7. f(z,y) is the distribution when we
rotate the line around a point on the boundary. The disc A, of radius r
has probability arcsin(r). The density in the r direction is 1/v/1 — 2.
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0.2 0.4 0.6 0.8 1

Figure. A plot of the radial
density function f(r) for the
three different interpretation of
the Bertrand paradoz.

Chapter 2. Limit theorems

0.2

0.2 0.4 0.6 0.8 1

Figure. A plot of the radial dis-
tribution function F(r) = P[A,]
There are different wvalues at
F(1/2).

So, what happens, if we really do an experiment and throw randomly lines
onto a disc? The punch line of the story is that the outcome of the ex-
periment very much depends on how the experiment will be performed. If
we would do the experiment by hand, we would probably try to throw the
center of the stick into the middie of the disc. Since we would aim to the
center, the distribution would be different from any of the three solutions
given in Bertrand’s paradox.

Definition. A distribution function F is called absolutely continuous (ac), if
there exists a Borel measurable function f satisfying F(z) = [*__ f(z) dz.
One calls a random variable with an absolutely continuous distribution
function a continuous random variable.

Definition. A distribution function is called pure point (pp) or atomic if
there exists a countable sequence of real numbers z,, and a sequence of
positive numbers pn, Y., pn = 1 such that F(z) = >_, . ., Pn. One calls
a random variable with a discrete distribution function a discrete random
variable.

Definition. A distribution function F is called singular continuous (sc) if
is continuous and if there exists a Borel set S of zero Lebesgue measure such
that pur(S) = 1. One calls a random variable with a singular continuous
distribution function a singular continuous random variable.

Remark. The definition of (ac),(pp) and (sc) distribution functions is com-
patible for the definition of (ac),(pp) and (sc) Borel measures on R. A Borel
measure is (pp), if u(A) = Y., c 4 u({a}). It is continuous, if it contains no
atoms, points with positive measure. It is (ac), if there exists a measurable
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function f such that p = f dz. It is (sc), if it is continuous and if u(S) =1
for some Borel set S of zero Lebesgue measure.

The following decomposition theorem shows that these three classes are
natural:

Theorem 2.12.2 (Lebesgue decomposition theorem). Every Borel measure
u on (R, B) can be decomposed in a unique way as & = lpp + fac + Kscs
where p1,, is pure point, psc is singular continuous and g, is absolutely
continuous with respect to the Lebesgue measure A.

Proof. Denote by A the Lebesgue measure on (R, B) for which A([a,b]) =
b—a. We first show that any measure i can be decomposed as pt = pigc+ s,
where L4, is absolutely continuous with respect to A and y, is singular. The

decomposition is unique: y = ut(w + ,u(z) (2) §2’ implies that u( )

u.(fc) = ug) (2) is both absolutely contmuous and singular continuous with
respect to i Wthh is only possible, if they are zero. To get the existence
of the decomposition, define ¢ = sup 4. A y4)=o u(A). If ¢ = 0, then u is
absolutely continuous and we are done. If ¢ > 0, take an increasing sequence
A, € B with p(A,) — c. Define A = (J,,»; An and poc 88 fac(B) =
(AN B). To split the singular part s into a singular continuous and pure

point part, we again have uniqueness because s = ugc) (2) = ug,) (%)

implies that v = ,ugi) ug) (2) u,(,f,) are both smgular continuous and

pure point which implies that V = 0. To get existence, define the finite or
countable set A = {w | p{w) > 0} and define p,,(B) = p(AnN B). O

Definition. The Gamma function is defined for x > 0 as
I'(z) = / t* et dt .
0

It satisfies I'(n) = (n — 1)! for n € N. Define also

1
B(p,q) = / (1 - )0 de |
4]

the Beta function.
Here are some examples of absolutely continuous distributions:

acl) The normal distribution N(m,o?) on 2 = R has the probability den-
sity function
1 z=m)?

e " 2o
V2no?

f(z) =
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ac2) The Cauchy distribution on 2 = R has the probability density function

f@) =2t

T+ (z-m)2 "

ac3) The uniform distribution on Q = [a, b] has the probability density
function

1
_a.

f@) =7

ac4) The exponential distribution A > 0 on ) = [0, 00) has the probability
density function

f(z) = e

ac) The log normal distribution on Q = [0, 00) has the density function

1 __(og(x —m!2
I) = ———e¢ 20 .
i) V2rzia?

ac6) The beta distribution on Q = [0,1] with p > 1,¢q > 1 has the density

ac7) The Gamma distribution on Q = [0, co) with parameters a > 0, B8>0

xa—-lﬂae—x/ﬂ

f($)=——W-

SN N

Figure. The probability density Figure. The probability density
and the CDF of the normal dis- and the CDF of the Cauchy dis-
tribution. tribution.
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Figure. The probability density Figure. The probability density
and the CDF of the uniform dis- and the CDF of the ezponential
tribution. distribution.

Definition. We use the notation

(%)= w=mm

for the Binomial coefficient, where k! = k(k—1)(k—2) - - - 2-1 is the factorial
of k with the convention 0! = 1. For example,

10 10!

Examples of discrete distributions:

ppl) The binomial distribution on @ ={1,...,n }
pix =k = (1 )ra-pr

pp2) The Poisson distribution on Q=N

pp3) The Discrete uniform distribution on 2 = {1,.,n}

PIX =K =

rp4) The geometric distribution on 2 =N = {0,1,2,3,...}
P[X =k] =p(l -p)*

pp5) The distribution of first success on 2 = N \ {0} ={1,2,3,... }

PIX =k =p(l—-p)*"
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&

Figure. The probabilities and the
CDF of the binomial distribution.

Figure. The probabilities and the
CDF of the uniform distribution.
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Figure. The probabilities and the
CDF of the Poisson distribution.

Figure. The probabilities and the
CDF of the geometric distribution.

An example of a singular continuous distribution:

E,_1. Define

variables as follows:

scl) The Cantor distribution. Let ¢ = Moy En be the Cantor set,
where Eq = [0,1], E; = [0,1/3] U [2/3,1] and E,, is inductively
obtained by cutting away the middle third of each interval in

F(x) = nli_.nc}G Fo(x)

where F;, (z) has the density (3/2)"-1g, . One can realize a random
variable with the Cantor distribution as a sum of IID random

r:an
X=Z§;’

where X, take values 0 and 2 with probability 1 /2 each.
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0.8
Figure. The CDF of the Cantor
distribution is continuous but not 0.6
absolutely continuous. The func-
tion Fx(x) is in this case called
the Cantor function. Its graph is

also called a Devils staircase
0.2

Lemma 2.12.3. Given X € £ with law p. For any measurable map h : R! —
[0,00) for which h(X) € L', one has E[h(X)] = Jg h(z) du(z). Especially,
if 4 = pge = f dx then

E[h(X)] = /R h(z)f(z) dz
If p = ppp, then

ERX)]= Y  h@u{s}).

z,u({z})#0

Proof. If the function h is nonnegative, prove it first for X = clzc 4, then
for step functions X € S and then by the monotone convergence theorem
for any X € L for which h(z) € £'. If h(X) is integrable, then E[h(X)] =
E[r*(X)] - E[h~(X)). 0

Proposition 2.12.4.

Distribution Parameters Mean Variance

acl) Normal meR,0>>0 | m a?

ac2) Cauchy meR,b>0 | "m’ 00

ac3) Uniform a<b (a+b)/2 [ (b—a)?/12

ac4) Exponential | A > 0 1/ 1/)%
| ac5) Log-Normal [ meR, g2>0 [ erto’/2 | (77 —1)e2mte” I
| ac6) Beta | 7.¢>0 p/P+d) | rpheren |

[ ac7) Gamma [ a,8>0 | op | aB? |
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Proposition 2.12.5.

ppl) Bernoulli neN,pel0,1] | np np(1 —p)
pp2) Poisson A>0 A A
pp3) Uniform neN (1+n)/2 | (n®-1)/12
pp4) Geometric | p€ (0,1) 1-p)/p | (1 -p)/p°
| pp5) First Success | p € (0,1) [ 1/p [ (A -p)/p* |
| sc1) Cantor - | 1/2 [ 1/8 |

Proof. These are direct computations, which we do in some of the examples:
Exponential distribution:

oo !
E[X?] = Pre=> dz = Pgixr-1 = 2
= [ e o= ey = B

Poisson distribution:

© —AAk N e Ak—l
k=0 k=1

For calculating higher moments, one can also use the probability generating
function

% k
E[+X] = Ze—,\ ()\’:') Ve
k=0 :

and then differentiate this identity with respect to z at the place z = 0. We
get then

E[X] = )\, E[X(X - 1)] = AL E[X? =E[X(X — 1)(X —2)],...

so that E[X?2] = XA + A2 and Var[X] = A
Geometric distribution. Differentiating the identity for the geometric series

= 1
Zxk: 1-=z

k=0
gives
e 1
Z kl’k_l
— 2
prd (1-2)
Therefore
EX, =Y k(1 -pfp=> k(l-pfp=p) k1l-p)*=5=-
k=0 k=0 k=1 p p

For calculating the higher moments one can proceed as in the Poisson case
or use the moment generating function.
Cantor distribution: because one can realize a random variable with the
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Cantor distribution as X = Y >- | X,,/3", where the IID random variables
X, take the values 0 and 2 with probability p = 1/2 each, we have

E[X,] 1 1
ElX] = Z[ Z3—_1—1/3 1=3

n=1 n=1
and
o0 oo o
Var[X,] Var[X,] 1 1 9 1
Var(X] nz::l 3n :L:al on ; " ~1-1/9 8 B8
See also corollary (3.1.6) for an other computation. ]

Computations can sometimes be done in an elegant way using character-
istic functions ¢x(t) = E[e**X] or moment generating functions Mx (t) =
EletX]. With the moment generating function one can get the moments
with the moment formula

d"M
E[X"] = /Rl”n dp = ”‘dtTX(t)lho .

For the characteristic function one obtains

d"ox
dtr

B = [ 2" du = (<" S @eeo

Example. The random variable X (z) = z has the uniform distribution
on [0,1]. Its moment generating function is Mx(t) = 01 2 dr = (e* —
1)/t = 1+t/2!+¢2/3!+. ... A comparison of coefficients gives the moments

E[X™] = 1/(m + 1), which agrees with the moment formula.

Example. A random variable X which has the Normal distribution N(m, o)
has the moment generating function Mx () = e™+°"t*/2_ All the moments
can be obtained with the moment formula. For example, E[X] = M (0) =
m, E[X?] = M%(0) = m? + o°.

Example. For a Poisson distributed random variable X on @ = N =
k
{0,1,2,3,... } with P[X = k] = e~*2;, the moment generating function is

Mx(t) = 3 PIX = kle® = X1=¢) .
k=0

Example. A random variable X on @ = N = {0,1,2,3,... } with the
geometric distribution P[X = k] = p(1 — p)* has the moment generating
function

_Oo t _ = t\k _ p
t)~kzzoekp(1—:0)k—pl§)((1*1?)€)k—m—)g-
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A random variable X on = {1,2,3,... } with the distribution of first
success P[X = k] = p(1 — p)*~!, has the moment generating function

Mx(t) = ;e’“‘p(l -p)t= etpk;((l —pe')* = IT(T_W :

Exercice. Compute the mean and variance of the Erlang distribution

)\ktk—l e
f(z) = [T
on the positive real line = [0, o0) with the help of the moment generating
function. If k is allowed to be an arbitrary positive real number, then the
Erlang distribution is called the Gamma distribution.

Lemma 2.12.6. If X,Y are independent random variables, then their mo-
ment generating functions satisfy

Mx+y(t) = Mx(t) . My(t) .

Proof. If X and Y are independent, then also !X and etY are independent.
Therefore,

E[e/+Y)] = EleXe®] = B[ [Ble®Y] = Mx(t) - My (t) .
a

Example. The lemma can be used to compute the moment generating
function of the binomial distribution. A random variable X with bino-
mial distribution can be written as a sum of IID random variables X;
taking values 0 and 1 with probability 1 — p and p. Because for n = 1,
we have Mx,(t) = (1 — p) + pe!, the moment generating function of X
is Mx(t) = [(1 — p) + pe’]™. The moment formula allows us to compute
moments E[X™] and central moments E[(X — E[X])"] of X. Examples:

EX] = np
E[X? = np(l-p+np)
Var[X] = E[(X - E[X])’] = E[X?] - E[X]* = np(1 — p)
EX? = np(l+3(n-1p+(2-3n+n2)p?
EXY = npl+7(n—1)p+6(2-3n
+n2)p? + (=6 + 11n — 6n2 + n3)p®)
E[(X - E[X])*] = E[X*-S8E[X]E[X?]+6E[X??+ E[X]*

= np(l-p)(1+ (5n — 6)p — (=6 + n + 6n?)p?)
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Example. The sum X +Y of a Poisson distributed random variable X with
parameter A and a Poisson distributed random variable Y with parameter
u is Poisson distributed with parameter A+ p as can be seen by multiplying
their moment generating functions.

Definition. An interesting quantity for a random variable with a continuous
distribution with probability density fx is the Shannon entropy or simply
entropy

H(X) = - /R £()log(f (@) da

Without restricting the class of functions, H(X) is allowed to be —oco or
0o. The entropy allows to distinguish several distributions from others by
asking for the distribution with the largest entropy. For example, among all
distribution functions on the positive real line [0, o0) with fixed expectation
m = 1/), the exponential distribution Ae™* is the one with maximal en-
tropy. We will return to these interesting entropy extremization questions
later.

Example. Let us compute the entropy of the random variable X (z) =™
on ([0,1],B,dz). We have seen earlier that the density of X is fx(z) =
/™1 /m so that

H(X)=— /Ol(wl/m_l/m) log(z'/™ ! /m) dz .

To compute this integral, note first that f(z) = z*log(z®) = az® log(z) has
the antiderivative az'*%((1+a)log(z)—1)/(1+a)? so that fol z°log(x?) dz =
—a/(14a?) and H(X) = (1—m+log(m)). Because ;&= H(X,) = (1/m)—-1
and %H (Xm) = —1/m?, the entropy has its maximum at m = 1, where
the density is uniform. The entropy decreases for m — co. Among all ran-
dom variables X (z) = ™, the random variable X (z) = = has maximal
entropy.

Figure. The entropy of the ran-
dom wvariables X(z) = z™ on 2
[0,1] as a function of m. The
mazximum is attained for m =1,
which is the uniform distribution
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2.13 Weak convergence

Definition. Denote by Cy(R) the vector space of bounded continuous func-
tions on R. This means that ||f||c = ., g |f(2)| < 00 for every f € Cy(R).
A sequence of Borel probability measures p, on R converges weakly to a
probability measure 4 on R if for every f € Cy(R) one has

/Rfdunﬁ/deu

in the limit n — ooc.

Remark. For weak convergence, it is enough to test o fdun — [y fdu
for a dense set in Cy(R). This dense set can consist of the space P(R) of
polynomials or the space C$°(R) of bounded, smooth functions.

An important fact is that a sequence of random variables X, converges
in distribution to X if and only if E[h(X,)] — E[h(X)] for all smooth
functions h on the real line. This will be used the proof of the central limit
theorem.

Weak convergence defines a topology on the set M, (R) of all Borel proba-
bility measures on R. Similarly, one has a topology for M;([a, b).

Lemma 2.13.1. The set M;(I) of all probability measures on an interval
I = [a,b] is a compact topological space.

Proof. We need to show that any sequence y, of probability measures on
I has an accumulation point. The set of functions fi(z) = z* on [a, b] span
all polynomials and so a dense set in Cy([a, b]). The sequence p,, converges

to u if and only if all the moments f: z* du,, converge for n — oo and for
all k € N. In other words, the compactness of M ([a, b]) is equivalent to the
compactness of the product space IN with the product topology, which is
Tychonovs theorem. ]

Remark. In functional analysis, a more general theorem called Banach-
Alaoglu theorem is known: a closed and bounded set in the dual space X*
of a Banach space X is compact with respect to the weak-* topology, where
the functionals un converge to  if and only if u,(f) converges to u(f) for
all f € X. In the present case, X = Cyla,b] and the dual space X* is the
space of all signed measures on [a, b] (see [7]).

Remark. The compactness of probability measures can also be seen by
looking at the distribution functions F,(s) = u((—o0, s]). Given a sequence
F;, of monotonically increasing functions, there is a subsequence F,, which
converges to an other monotonically increasing function F, which is again
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a distribution function. This fact generalizes to distribution functions on
the line where the limiting function F is still a right-continuous and non-
decreasing function Helly’s selection theorem but the function F does not
need to be a distribution function any more, if the interval [a, b] is replaced
by the real line R.

Definition. A sequence of random variables X,, converges weakly or in law
to a random variable X, if the laws ux, of X,, converge weakly to the law
px of X.

Definition. Given a distribution function F, we denote by Cont(F') the set
of continuity points of F.

Remark. Because F is nondecreasing and takes values in [0, 1], the only
possible discontinuity is a jump discontinuity. They happen at points ¢;,
where a; = p({t;}) > 0. There can be only countably many such disconti-
nuities, because for every rational number p/g > 0, there are only finitely
many a; with a; > p/q because Zi a; <1.

Definition. We say that a sequence of random variables X,, converges in
distribution to a random variable X, if Fx_(z) — Fx(z) point wise for all
z € Cont(F).

Theorem 2.13.2 (Weak convergence = convergence in distribution). A se-
quence X, of random variables converges in law to a random variable X if
and only if X,, converges in distribution to X.

Proof. (i) Assume we have convergence in law. We want to show that we
have convergence in distribution. Given s € Cont{(f) and § > 0. Define a
continuous function 1(_ o o < f < 1(_c0,s46). Then

Fu(s) = /R (oo diin < /R f dpin < /R 1 oost8] ditn = Fa(s + )

This gives

limsup F,(s) < lim /f dpn, = /fdu < Flz+9).
n—oo n—oo
Similarly, we obtain with a function 1(_o s—8) < f < 1(_oog)
liminf F,,(s) > lim /f din, = /f du>F(s—§6).
n—oo n—ooo

Since F is continuous at z we have for § — 0:

F(s) = }%F(s —-9) < linn-l-»LIéfF"(s) < limsup F,(s) < F(s) .

n—oo
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That is we have established convergence in distribution.

(ii) Assume now we have no convergence in law. There exists then a con-
tinuous function f so that [ f du, to [ f dp fails. That is, there is a
subsequence and € > 0 such that | [ f dun, — [ f du| > € > 0. There exists
a compact interval I such that | [} f dpn, — f; f du|l > €/2 > 0 and we
can assume that p,, and g have support on I. The set of all probability
measures on I is compact in the weak topology. Therefore, a subsequence
of dun, converges weakly to a measure v and |v(f) — pu(f)| > €/2. De-
fine the m-system Z of all intervals {(—o0,s] | s continuity point of F' }.
We have p,((—00,s]) = Fx, (s) — Fx(s) = p(—00,s]). Using (i) we see
pn, ((—00, 8]) — v(—00, 5] also, so that p and v agree on the 7 system Z. If
p and v agree on I, they agree on the m-system of all intervals {(—oo, s]}.
By lemma (2.1.4), we know that 4 = v on the Borel o-algebra and so u = v.
This contradicts |v(f) — u(f)| > €/2. So, the initial assumption of having
no convergence in law was wrong. O

2.14 The central limit theorem

Definition. For any random variable X with non-zero variance, we denote
by

X = o(X)

the normalized random variable, which has mean E[X*] = 0 and variance
o(X*) = /Var[X*| = 1. Given a sequence of random variables X, we
again use the notation S, = > r_; Xk.

Theorem 2.14.1 (Central limit theorem for independent L3 random vari-
ables). Assume X; € £3 are independent and satisfy

NS
M=st;p||Xi||3 < 00, 5:11nn_1*101<1>f;ZVar[X¢] >0.

i=1

Then S* converges in distribution to a random variable with standard
normal distribution N (0, 1):

lim P[S; <z| = 124y VeeR.

1 T
—— €
n—oo V2 /—oo
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Figure. The probabil-
ity density function
fs: of the random
variable X (x) = = on
[-1,1].

Figure. The probabil-
ity density function
fs; of the random
variable X (z) = = on
-1,1].

Figure. The probabil-
sty density function
Fs; of the random
variable X(z) = = on
[—1,1].

Lemma 2.14.2. A N(0,0?) distributed random variable X satisfies

BXP) = <=2 T (5(p+1).

Especially E[| X 3] = \/ga:’.

z2
Proof. With the density function f(z) = (2r02)~/2e” 2.2 , we have E[| X |P] =
2 [° 2P f(x) dz which is after a substitution z = 1% /(20?) equal to
1

[o ]
L 9p/2,p p3Pt)=1g—z g0
VT 0

The integral to the right is by definition equal to I‘(%(p +1)). d

After this preliminary computation, we turn to the proof of the central
limit theorem.

Proof. Define for fixed n > 1 the random variables

(Xi: — E[Xi))

T

,1<i1<n

so that S = Yo, ¥;. Define N (0, 0)-distributed random variables Y; hav-

ing the property that the set of random variables
i,...,Y,Yh,... Y }

are independent. The distribution of S, = S Y; is just the normal distri-
bution N(0,1). In order to show the theorem, we have to prove E[f(S})] —



94 Chapter 2. Limit theorems

E[f (Sn)] — 0 for any f € Cy(R). It is enough to verify it for smooth f.
Define ) )
‘ Zr=Y1+.. .Y 1+ Y1 +---+Y,.

‘Note that Z; + Y7 = S} and Z, + Yy = Sn. Using first a telescopic sum
and then Taylor’s theorem, we can write

FS5) = F(8n) = D [f(Zk+Ye) - f(Zk+ i)

k=1

= Z[f Z)( Yk—Yk]+Z[ (Ze) (V¢ = YV2)

k=1

+Z[R(Zk,Yk) + R(Zk, V)]
k=1

with a Taylor rest term R(Z,Y"), which can depend on f. We get therefore
|E[£(S2)] = E[f (Sl < Z ([R(Zk, Yo)ll + E[R(Z6, V)] . (2.7)

Because Y; are N(0,02)-distributed, we get by lemma (2.14.2) and the
Jensen inequality (2.5.1)

8
e - 20 = e < | Zenap.
Taylor’s theorem gives |R(Zg, Y )| < const - |Yx|3 so that

> E[R(Zk, Yo)l| + E[| R(Zx, V)] const - Y _ E[[¥i[%]
k=1 k=1

IA

< const-7n-sup || X3/ Var[S,]%/?
_ o _sup [iXGlls 1
= NalS, /0 Ve
_M_cp
IR RERV A '
We have seen that for every smooth f € Cy(R) there exists a constant C(f)
such that |E[f(S7)] — E[f(Sa)]l < C(f)/v/n. O

if we assume the X; to be identically distributed, we can relax the condition
X; e L3t0 X, e L%

Theorem 2.14.3 (Central limit theorem for IID L? random variables). If
X; € L£? are TID and satisfy 0 < Var[X;], then S, converges weakly to a
random variable with standard normal distribution N (0, 1).
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Proof. The same proof gives equation (5.4). We change the estimation of
Taylor |R(z,y)| < &(y) - y* with d(y) — 0 for |y| — 0. Using the IID
property and using dominated convergence we can estimate the rest term

R="Y E[R(Z,Y4)]] + E[R(Z, Vi)
k=1

as follows:

R < BBV + BT
k=1

= n-E[)( ’:}_)3{;—]+n-E[5( Xln)f;—i]

¥ v 2
< n- E[6(—T)]E[X J+n .E[é(g - )]E[%]
_ By an[X? +B[5( \/—‘E[—-—]
< E[é(oﬁ)](f—’o

O

The central limit theorem can be interpreted as a solution to a fixed point
problem:

Definition. Let Py ;1 be the space of probability measure p on (R, Br) which
have the properties that [ 2? du(z) = 1, [ = du(z) = 0. Define the map

_ r+y
Tu(A) = /R /R La( o)

on Py 1.

Corollary 2.14.4. The only attracting fixed point of T on Py ; is the law of
the standard normal distribution.

Proof. If p is the law of a random variable X with Var[X] =1 and E[X] =
0. Then T'(y) is the law of the normalized random variable (X + X)/v/2 be-
cause the independent random variables X, Y can be realized on the proba-
bility space (R?, B, 1 x i) as coordinate functions X ((z,y)) = z,Y ((z,y)) =
y. Then T(1) is obviously the law of (X +Y)/v/2. Now use that T"(X) =
(S2n)* converges in distribution to N(0,1). O
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For independent 0 — 1 experiments with win probability p € (0,1), the
central limit theorem is quite old. In this case

Hm P[M < z] = i/ e—y2/2 d’y
m=ee "y/np(1 - p) 27 J —co

as had been shown by de Moivre in 1730 in the case p = 1/2 and for general
p € (0,1) by Laplace in 1812. It is a direct consequence of the central limit
theorem:

Corollary 2.14.5. (DeMoivre-Laplace limit theorem) The distribution of X}
converges to the normal distribution if X,, has the binomial distribution

B(n,p).

For more general versions of the central limit theorem, see [105]. The next
limit theorem for discrete random variables illustrates, why Poisson dis-
tribution on N is natural. Denote by B(n,p) the binomial distribution on
{1,...,n } and with P, the Poisson distribution on N\ {0 }.

Theorem 2.14.6 (Poisson limit theorem). Let X, be a B(n, p,)-distributed
and suppose np, — a. Then X,, converges in distribution to a random
variable X with Poisson distribution with parameter a.

Proof. We have to show that P[X, = k] — P[X = k] for each fixed k € N.

PlXn, =k = ( Z )PZ(I _Pn)n_k
_ n(n — 1)(n—2}3!...(n—k+1)pz(l_pn)n_k
~ Lpa - Myt e

k! n k!
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Figure. The binomial  Figure. The binomial Figure. The Pois-

distribution B(2,1/2)  distribution B(5,1/5)  son distribution
has its support on  has its support on with a = 1 on
{0,1,2 }. {0,1,2,3,4,5 }. N={0,1,2,3,... }.

Exercice. It is custom to use the notation

O(s) = Fx(s) = \/%f_ e V'/2 dy

for the distribution function of a random variable X which has the standard
normal distribution N (0,1). Given a sequence of IID random variables X,
with this distribution.

a) Justify that one can estimate for large n probabilities

Pla < S, < b] ~ ®(b) — ®(a) .

b) Assume X; are all uniformly distributed random variables in [0, 1].
Estimate for large n
P[|S,/n—0.5] > €

in terms of ®, ¢ and n.
¢) Compare the result in b) with the estimate obtained in the weak law of
large numbers.

Exercice. Define for A > 0 the transformation

B = [ [ 15 dute) dntw)

in P = M;(R), the set of all Borel probability measures on R. For which A
can you describe the limit?
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2.15 Entropy of distributions

Denote by v a (not necessarily finite) measure on a measure space (2, A).
An example is the Lebesgue measure on R or the counting measure on N.
Note that the measure is defined only on a §-subring of A since we did not
assume that v is finite.

Definition. A probability measure x on R is called v absolutely continuous,
if there exists a density f € £'(v) such that p = fv. If p is v-absolutely
continuous, one writes u < v. Call P(v) the set of all v absolutely contin-
uous measures. The set P(v) is the set of functions f € £'(v) satisfying

f>0and [ f(z) dv(z) = 1.

Remark. The fact that u < v defined earlier is equivalent to this is called
the Radon-Nykodym theorem ([?]). The function f is therefore called the
Radon-Nykodym derivative of y with respect to v.

Example. If v is the counting measure N = {0,1,2,... } and v is the
law of the geometrlc distribution with parameter p, then the density is

- f(k) = p(1 —p)*.

Example. If v is the Lebesgue measure on (—00,00) and y is the law of
the standard normal distribution, then the density is f(z) = e=="/2 /2.
There is a multi-variable calculus trick using polar coordinates, which im-
mediately shows that f is a density:

oo 27
// e~ @ V)2 grgy — / / e~ /2 rdfdr = 27 .
R? o Jo

Definition. For any probability measure u € P(v) define the entropy

- /Q — (@) log(f(w)) d(w) .

It generalizes the earlier defined Shannon entropy, where the assumption
had been dv = dz.

Example. Let v be the counting measure on a countable set 2, where A
is the o-algebra of all subsets of 2 and let the measure v is defined on the
d-ring of all finite subsets of . In this case,

=Y —fw)log(f(w)) .

weN
For example, for @ = N = {0,1,2,3,... } with counting measure v, the
geometric distribution P[{k}] = p(1 — p)* has the entropy

oo

_ Cop(L=Py _ log(l —p)
go p)*plog((1 — p)*p) = log( ) rt
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Example. Let v be the Lebesgue measure on R. If 4 = fdz has a density
function f, we have .

H() = /R _f(z) log(f (x)) dz .

For example, for the standarzd normal distribution g with probability den-
sity function f(z) = #e”” /2 the entropy is H(f) = (1 + log(2m))/2.

Example. If v is the Lebesgue measure dz on {2 = R* = [0,00). A random
variable on Q with probability density function f(x) = e~ % is called the
exponential distribution. It has the mean 1 /. The entropy of this distri-
bution is (log(A) — 1)/A.

Example. If v is a probability measure on R, f a density and
A={A1,...,.An}

is a partition on R. For the step function

F=Yo(f raaesw),
i=1 YA
the entropy H(fv) is equal to

H({Ai}) =) —v(A:)log(v(4)

(3

which is called the entropy of the partition {A;}. The approximation of the
density f by a step functions f is called coarse graining and the entropy
of f is called the coarse grained entropy. It has first been considered by
Gibbs in 1902.

Remark. In ergodic theory, where one studies measure preserving trans-
formations T of probability spaces, one is interested in the growth rate of
the entropy of a partition generated by A, T(A),..,T "(A). This leads to
the notion of an entropy of a measure preserving transformation called
Kolmogorov-Sinai entropy.

Interpretation. Assume that { is finite and that v the counting measure
and p({w}) = f(w) the probability distribution of random variable de-
scribing the measurement of an experiment. If the event {w} happens, then
—log(f(w)) is a measure for the information or »surprise” that the event
happens. The averaged information or surprise is

H(p) =Y —f(w)log(f(w)) -
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If f takes only the values 0 or 1, which means that 1 is deterministic,
then H(p) = 0. There is no surprise and what the measurements show, is
the reality. On the other hand, if f is the uniform distribution on Q, then
H(p) = log(]2]). We will see in a moment that this is the maximal entropy.

Definition. Given two probability measures y = fv and i = fv which are
both absolutely continuous with respect to v. Define the relative entropy

fw)
fw)

H(@ly) = / ) log(2) du(z) € [0,00] .

It is the expectation E;[l] of the Likelihood coefficient | = log(%f%) The

negative relative entropy ~H (ji|u) is also called the conditional entropy.
One writes also H(f|f) instead of H (Blp).

Theorem 2.15.1 (Gibbs inequality). 0 < H(g|u) < +oo and H(ji|p) = 0 if
and only if y = .

Proof. We can assume H (f|p) < oo. The function u(z) = xlog(x) is convex
on Rt = [0, 00) and satisfies u(z) > z — 1.

H(il) = [ Fop ii > [t i 1) dv=0.

.’l?

If u = fi, then f = f almost everywhere and H(ji|p) =0.
On the other hand, if H(fi|u) =0, then by the Jensen inequality (2.5.1)

0= Bulu(h)) > u®.lD) = ut) = 0.

Therefore, E,,[u( *}f)] = u(E#[x;]) The strict convexity of u implies that ‘;
must be a constant. Since both f and f are densities, we have f = f. 0O

Remark. The relative entropy can be used to measure the distance between
two distributions. It is not a metric although. The relative entropy is also
known under the name Kullback-Leibler divergence or Kullback-Leibler
metric, if v = dz [85].
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Theorem 2.15.2 (Distributions with maximal entropy). The following dis-
tributions have maximal entropy.

a) If Q is finite with counting measure v. The uniform distribution on
has maximal entropy among all distributions on €. It is unique with this

property.
b) Q = N with counting measure v. The geometric distribution with
parameter p = c~! has maximal entropy among all distributions on

N ={0,1,2,3,... } with fixed mean c. It is unique with this property.

c) = {0,1} with counting measure v. The product distribution 7",
where 7(1) = p,n(0) = 1 — p with p = ¢/N has maximal entropy among all
distributions satisfying E[Sy] = ¢, where Sy(w) = Ef;l w;. It is unique
with this property.

d) Q = [0, c0) with Lebesgue measure v. The exponential distribution with
density f(z) = Ae™*® with parameter A on Q has the maximal entropy
among all distributions with fixed mean ¢ = 1/A. It is unique with this
property.

e) @ = R with Lebesgue measure v. The normal distribution N(m,o?)
has maximal entropy among all distributions with fixed mean m and fixed
variance o2. It is unique with this property.

f) Finite measures. Let (£2,.4) be an arbitrary measure space for which
0 < v(Q) < oo. Then the measure v with uniform distribution f = 1/v(f)
has maximal entropy among all other measures on Q. It is unique with this
property.

Proof. Let = fv be the measure of the distribution from which we want
to prove maximal entropy and let i = fv be any other measure. The aim
is to show H(fi|u) = H(u) — H(it) which implies the maximality since by
the Gibbs inequality lemma (2.15.1) H(f|u) > 0.

In general,

H(@lw) = —H(@) - /Q F(w) log(f(w)) dv

so that in each case, we have to show

H(u) = — / F(w) log(f(w) do (2.8)
With
H(@lu) = H(p) - (@)

we also have uniqueness: if two measures fi, 4 have maximal entropy, then
H(iz|p) = 0 so that by the Gibbs inequality lemma (2.15.1) p = fi.

a) The density f = 1/|Q| is constant. Therefore H(u) = log(|©?|) and equa-
tion (2.8) holds.
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b) The geometrlc distributionon N = {0,1,2, ... } satisfies P[{k:}] = f(k) =
p(1 — p)*, so that

/ Fw)log(s ~ toglp) + [ Fw)klog(1 - p) dv
— log(p) - log(1 - p) /Q Fw) dv(w)
- 1o p

which is also the entropy of u.

¢) The discrete density is f(w) = pS¥ (1 — p)N~5¥ so that

log(f(k)) = S log(p) + (N — Sn)log(1 — p)

and

> f(k)log(f(k)) = E[Sn]log(p) + (N — E[Sn]) log(1 —p) .
k

The claim follows since we fixed E[Sy].

d) The density is f(z) = ae™®*, so that log(f(z)) = log(a) — az. The
claim follows since we fixed E[X] = [ z dji(z) was assumed to be fixed for
all distributions.

e) For the normal distribution log(f(z)) = a + b(z — m)? with two real
number a, b depending only on m and ¢. The claim follows since we fixed
Var[X] = E[(z — m)?] for all distributions.

f) The density f =1 is constant. Therefore H(u) = 0 which is also on the
right hand side of equation (2.8). O

Remark. This result has relations to the foundations of thermodynamics,
where one considers the phase space of N particles moving in a finite region
in Euclidean space. The energy surface is then a compact surface {2 and the
motion on this surface leaves a measure v invariant which is induced from
the flow invariant Lebesgue measure. The measure v is called the micro-
canonical ensemble. According to f) in the above, it is the measure which
maximizes entropy.

Remark. Let us try to get the maximal distribution using calculus of vari-
ations. In order to find the maximum of the functional

H(f) = - / Flog(f) dv

on £!(v) under the constraints

:/Qfdu=1, G(f)=/QdeV=c,



2.15. Entropy of distributions 103

we have to find the critical points of H = H — AF — G In infinite dimen-
sions, constrained critical points are points, where the Lagrange equations

0 0 0

a—fH(f) = Aa—fF(f) +M5fG(f)
F(fy = 1
G(f) = ¢

are satisfied. The derivative 8/ is the functional derivative and A, i1 are
the Lagrange multipliers. We find (f, \,v) as a solution of the system of
equations

—1-log(f(z)) = A+ paz,

/f ) dv(z
/Qxf(z) dv(z) = ¢

by solving the first equation for f:

Il

1,

f — e-)\—uz+1

/63_>‘”““”+1 dv(z) = 1
/Ie“’\_’”+1 dv(z)

dividing the third equatlon by the second, so that we can get p from the
equation [ze #*z dv(z) = ¢ [ e #® du(z) and X from the third equation

eltr = [ e+ duy(z). ThlS variational approach produces critical points of
the entropy. Because the Hessian D?(H) = —1/f is negative definite, it is
also negative definite when restricted to the surface in £ determined by
the restrictions F' = 1, G = ¢. This indicates that we have found a global
maximum.

C

Example. For Q = R, X(z) = z2, we get the normal distribution N(0, 1).

Example. For Q = N, X(n) = ¢,, we get f(n) = e~ ™ /Z(f) with Z(f) =
>, e~¢»* and where ), is determined by Y e e~ = c. This is called
the discrete Maxwell-Boltzmann distribution. In physics, one writes A~} =
kT with the Boltzmann constant &, determining T, the temperature.

Here is a dictionary matching some notions in probability theory with cor-
responding terms in statistical physics. The statistical physics jargon is
often more intuitive.

| Probability theory | Statistical mechanics |
Set Q2 Phase space
Measure space Thermodynamic system
Random variable Observable (for example energy)
Probability density Thermodynamic state
Entropy Boltzmann-Gibbs entropy
Densities of maximal entropy | Thermodynamic equilibria
Central limit theorem Maximal entropy principle
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Distributions, which maximize the entropy possibly under some constraint
are mathematically natural because they are critical points of a variational
principle. Physically, they are natural, because nature prefers them. From
the statistical mechanical point of view, the extremal properties of entropy
offer insight into thermodynamics, where large systems are modeled with
statistical methods. Thermodyanamic equilibria often extremize variational
problems in a given set of measures.

Definition. Given a measure space (2,.A) with a not necessarily finite
measure v and a random variable X € £. Given f € £! leading to the
probability measure 1 = fv. Consider the moment generating function
Z(X) = E,[e*X] and define the interval A = {A € R | Z()\) < o0 } in R.
For every A € A we can define a new probability measure

A X
= fav Z(/\)
on €. The set
{uxreA}

of measures on (2, A) is called the exponential family defined by v and X.

Theorem 2.15.3 (Minimizing relative entropy). For all probability measures
fi which are absolutely continuous with respect to v, we have for all A € A

H(fi|p) — AER[X] > —log Z() .

The minimum — log Z(A) is obtained for .

Proof. For every ji = fv, we have

H @) / flog(— —dv

—H(ulux) +(- 1Og(Z'()\)) +AEz[X]) .

Il

For fi = py, we have
H(palp) = —log(Z(X)) + AE,, [X] .
Therefore
H(f|p) — ABa[X] = H(f|pa) —log(Z(A)) > —log Z(X) .

The minimum is obtained for fi = py. a
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Corollary 2.15.4. (Minimizers for relative entropy)

a) s minimizes the relative entropy i — H(ji|u) among all v-absolutely
continuous measures i with fixed Ez[X].

b) If we fix A by requiring E,, [X] = ¢, then u) maximizes the entropy
H(j1) among all measures i satisfying Ez[X] = c.

Proof. a) Minimizing ji — H(fi|u) under the constraint E;[X] = c is equiv-
alent to minimize
H(ﬁ“"') - )‘Eﬁ[X]v

and to determine the Lagrange multiplier A by E,, [X] = c. The above
theorem shows that yy is minimizing that.
b) If 4= fv,pur = e X f/Z, then

0 < H(, pa) = —H(f1) + (~log(2)) — AE,[X] = —H (i) + H(u») -
g

Corollary 2.15.5. If v = pu is a probability measure, then p) maximizes
F(u) = H(u) + AE,[X]

among all measures i which are absolutely continuous with respect to u.

Proof. Take p = v. Since then f =1, H(i|p) = —H(f1). The claim follows
from the theorem since a minimum of H(f|n) — AE3[X] corresponds to a
maximum of F(u). 0O

This corollary can also be proved by calculus of variations, namely by
finding the minimum of F(f) = [ flog(f) + X f dv under the constraint

Jfdv=1.

Remark. In statistical mechanics, the measure u is called the Gibbs distri-
bution or Gibbs canonical ensemble for the observable X and Z (1) is called
the partition function. In physics, one uses the notation A = —(kT)7!,
where T is the temperature. Maximizing H(x) — (kT)"'E,[X] is the same
as minimizing E,[X] — kT H(p) which is called the free energy if X is
the Hamiltonian and E,[X] is the energy. The measure u is the a priori
model, the micro canonical ensemble. Adding the restriction that X has
a specific expectation value ¢ = E,[X] leads to the probability measure
[, the canonical ensemble. We illustrated two physical principles: nature
maximizes entropy when the energy is fixed and minimizes the free energy,
when energy is not fixed.
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Example. Take on the real line the Hamiltonian X (z) = 2% and a measure
p = fdz, we get the energy [z? du. Among all symmetric distributions
fixing the energy, the Gaussian distribution maximizes the entropy.

Example. Let 2 = N = {0,1,2,... } and X(k) = k and let v be the
counting measure on {2 and u the Poisson measure with parameter 1. The
partition function is .

-1
€ ,
Z(\) = Ze"kw = exp(e* - 1)
k
so that A =R and pu) is given by the weights

_ el o
pa(k) = exp(e™ + 1)6'\kF =e " 7

where o = e* = 0. The exponential family of the Poisson measure is the
family of all Poisson measures.

Example. The geometric distribution on N = {0,1,2,3,... } is an expo-
nential family.

Example. The product measure on = {0,1 }"¥ with win probability p is
an exponential family with respect to X (k) = k.

Example. 2 = {1,..., N}, v the counting measure and let u;, be the bino-
mial distribution with p. Take p = ;2 and X (k) = k. Since

0

IA

H(ji|p) = H(ji|pp) + log(p)E[X] + log(1 — p)E[(N — E[X])]
—H(filpp) + H(pp)

pp is an exponential family.

Remark. There is an obvious generalization of the maximum entropy prin-
ciple to the case, when we have finitely many random variables {X;}7;.
Given p = fv we define the (n-dimensional) exponential family

P e
ll’/\ — JAV = Z(}\) lu’ bl

where

Z(N) = B[ %]

is the partition function defined on a subset A of R™.
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Theorem 2.15.6. For all probability measures i which are absolutely con-
tinuous with respect to v, we have for all A € A

H(lp) = 3 NEglXi] 2 —log Z(V) .

The minimum —logZ()) is obtained for px. If we fix A; by requiring
E,,[Xi] = ¢, then p) maximizes the entropy H (ix) among all measures
i satisfying E;[X;] = ¢;.

Assume v = u is a probability measure. The measure p) maximizes

F(g) = H(B) + XEz[X]

Proof. Take the same proofs as before by replacing AX with A - X
Yo X

Ot

2.16 Markov operators

Definition. Given a not necessarily finite probability space (2, A,v). A
linear operator P : £'(Q) — L£L*(Q) is called a Markov operator, if
f20=Pf2>0,
f20=||Pflly = I/l

Remark. In other words, a Markov operator P has to leave the closed
positive cone invariant £} = {f € £ | f > 0} and preserve the norm on
that cone.

Remark. A Markov operator on (2, A, v) leaves invariant the set D(v) =
{feL'| f>0,fllL =1} of probability densities. They correspond
bijectively to the set P(v) of probability measures which are absolutely
continuous with respect to v. A Markov operator is therefore also called a
stochastic operator.

Example. Let T be a measure preserving transformation on (2, 4, v). It is
called nonsingular if 7*v is absolutely continuous with respect to v. The
unique operator P : £! — £! satisfying

/APfdyz/T_lAde

is called the Perron-Frobenius operator associated to 7. It is a Markov
operator. Closely related is the operator Pf(z) = f(Tz) for measure pre-
serving invertible transformations. This Koopman operator is often studied
on £?, but it becomes a Markov operator when considered as a transfor-
mation on £,
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Exercice. Assume = [0,1] with Lebesgue measure u. Verify that the
Perron-Frobenius operator for the tent map

. ~ 20 ,z €[0,1/2
T(ﬂf)—{ 2(1 — x) ,xe%l/&l%

is Pf(@) = 3(f(32) + F(1 - $2)).

Here is an abstract version of the Jensen inequality (2.5.1). It is due to M.
Kuczma. See [61].

Theorem 2.16.1 (Jensen inequality for positive operators). Given a convex
function v and an operator P : £! — £' mapping positive functions into
positive functions satisfying P1 = 1, then

u(Pf) < Pu(f)
for all f € L1 for which Pu(f) exists.

Proof. We have to show u(Pf)(w) < Pu(f)(w) for almost all w € €2. Given
z = (Pf)(w), there exists by definition of convexity a linear function y —
ay + b such that u(z) = az + b and u(y) > ay +bfor ally € R. Therefore,
since af + b < u(f) and P is positive

u(Pf)(w) = a(Pf)w) + b= Plaf +b)w) < Plu(f)Ww) -
O

The following theorem states that relative entropy does not increase along
orbits of Markov operators. The assumption that {f > 0} is mapped into
itself is actually not necessary, but simplifies the proof.

Theorem 2.16.2 (Voigt, 1981). Given a Markov operator P which maps
{f > 0} into itself. For all f,g € ck,

H(Pf[Pg) < H(flg) -

Proof. We can assume that {g(w) = 0} C A = {f(w) = 0} because nothing
is to show in the case H(f|g) = oo. By restriction to the measure space
space (A¢, AN A%, v(- N A)), we can assume f > 0,9 > 0 so that by our
assumption also Pf > 0 and Pg > 0.
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(i) Assume first (f/g)(w) < ¢ for some constant c € R.

For fixed g, the linear operator Rh = P(hg)/P(g) maps positive functions
into positive functions. Take the convex function u(z) = zlog(z) and put
h = f/g. Using Jensen’s inequality, we get

P(f1
-I;—glog% = u(Rh) < Ru(h) = (f (;séf/g))

which is equivalent to P flog % < P(flog(f/g)). Integration gives

H(Pf|Pg) = /Pflogi—gdu

IA

/ P(flog(f/g)) dv = / flo8(f/g) dv = H(flg) .

(ii) Define f, = inf(f,kg) so that fy/g < k. We have fx C fis1 and
fi — f in £'. From (i) we know that H(Pfy|Pg) < H(fklg). We can
assume H(flg) < oo because the result is trivially true in the other case.
Define B = {f < g}. On B, we have fjlog(fx/g) = flog(f/g) and on Q\ B
we have

felog(fi/9) < fri1log(frs1/9)u — flog(f/g)

so that by Lebesgue dominated convergence theorem,
H(flg) = lim H(filg) .

As an increasing sequence, P fy converges to Pf almost everywhere. The
elementary inequality zlog(z) — z > zlog(y) — y for all z > y > 0 gives

(Pfi)log(Pfx) — (Pfi)log(Pg) — (Pfx) + (Pg) > 0.
Integration gives with Fatou’s lemma (2.4.2)

H(Pf|Pg) ~[IPfl| + ||Pgl| < liminf H(Pfi|Pg) — ||Pfill + || Pgl|

and so H(Pf|Pg) < liminfy_,o, H(P f|Pg). O

Corollary 2.16.3. For an invertible Markov operator P, the relative entropy
is constant: H (P f|Pg) = H(flg).

Proof. Because P and P~! are both Markov operators,

H(flg) = H(PP~'fIPP'g) < H(P™'f|P™'g) < H(flg) .
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Example. If a measure preserving transformation T is invertible, then the
corresponding Koopman operator and Perron-Frobenius operators preserve
relative entropy.

Corollary 2.16.4. The operator T(p)(A) = [¢. 1,4(%3) du(z) du(y) does
not decrease entropy.

Proof. Denote by X, a random variable having the law 4 and with u(X)
the law of a random variable. For a fixed random variable Y, we define the
Markov operator

X, +Y
P = pu(=t——).
y (1) = u( 7 )
Because the entropy is nondecreasing for each Py, we have this property
also for the nonlinear map T'(1) = Px, (u). O

We have shown as a corollary of the central limit theorem that T has a
unique fixed point attracting all of Py ;. The entropy is also strictly in-
creasing at infinitely many points of the orbit T™(u) since it converges to
the fixed point with maximal entropy. It follows that 7" is not invertible.

More generally: given a sequence X,, of IID random variables. For every n,
the map P, which maps the law of S into the law of S}, is a Markov
operator which does not increase entropy. We can summarize: summing up
IID random variables tends to increase the entropy of the distributions.

A fixed point of a Markov operator is called a stationary state or in more
physical language a thermodynamic equilibrium. Important questions are:
is there a thermodynamic equilibrium for a given Markov operator P and
if yes, how many are there?

2.17 Characteristic functions

Distribution functions are in general not so easy to deal with, as for ex-
ample, when summing up independent random variables. It is therefore
convenient to deal with its Fourier transforms, the characteristic functions.
It is an important topic by itself [60].

Definition. Given a random variable X, its characteristic function is a real-
valued function on R defined as

ox (u) = Ele™¥].

If Fx is the distribution function of X and px its law, the characteristic
function of X is the Fourier-Stieltjes transform

ox(t) = /Re““’ dFx(z) = /Rem px(dz) .
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Remark. If Fx is a continuous distribution function dFx(z) = fx(z) dz,
then ¢x is the Fourier transform of the density function fx:

/em fx(z) dz .
R

Remark. By definition, characteristic functions are Fourier transforms of
probability measures: if u is the law of X, then ¢x = i

Example. For a random variable with density fx(z) = z™/(m + 1) on
Q = [0, 1] the characteristic function is

ml(1 — een(—it))
(=it)*tm(m+1)

d)x(t):/o e z™ dr/(m+1) =

where e,(z) = >}, z*®/(k!) is the n’th partial exponential function.

Theorem 2.17.1 (Lévy formula). The characteristic function ¢x determines
the distribution of X. If a, b are points of continuity of F, then

o ,~ita _ ,—ith
Fx(b) = Fx{a) = %/ %m(t) dt . (2.9)

In general, one has

1 0 e—ita _ e—itb

] T¢X (t) dt = p[(a, b)] + %u[{a}] + %u[{b}] -

Proof. Because a distribution function F' has only countably many points of
discontinuities, it is encugh to determine F'(b) — F(a) in terms of ¢ if a and
b are continuity points of F'. The verification of the Lévy formula is then
a computation. For continuous distributions with density Fi = fx is the
inverse formula for the Fourier transform: fx( f_ e "apx(t) dt

so that Fx(a) = 217r oooo e:zﬂ ¢x(t) dt. This proves the inversion formula
if @ and b are points of continuity.
The general formula needs only to be verified when u is a point measure
at the boundary of the interval. By linearity, one can assume g is located
on a single point b with p = P[X = b] > 0. The Fourier transform of the
Dirac measure pd, is ¢x (t) = pe®®®. The claim reduces to
1/~ Mpeitbdtzg
21 J_ o (34 2

which is equivalent to the claim limp .o [ p R em‘l dt = 7 for c > 0.
Because the imaginary part is zero for every R by symmetry, only

R
lim / Smftc) dt =

R—oo -R
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remains. The verification of this integral is a prototype computation in
residue calculus. a

Theorem 2.17.2 (Characterization of weak convergence). A sequence X,
of random variables converges weakly to X if and only if its characteristic
functions converge point wise:

ox,(z) — éx .

Proof. Because the exponential function e is continuous for each ¢, it
follows from the definition that weak convergence implies the point wise
convergence of the characteristic functions. From formula (2.9) follows that
if the characteristic functions converge point wise, then convergence in dis-
tribution takes place. We have learned in lemma (2.13.2) that weak con-
vergence is equivalent to convergence in distribution. O

Example. Here is a table of characteristic functions (CF) ¢x(t) = E[e®X]
and moment generating functions (MGF) Mx () = E[e!X] for some familiar
random variables:

Distribution | Parameter CF MGF

Normal meR,o?>0 | emit=ot/2 gmtt+ot'/2
N(0,1) et /2 et /2

Uniform [—a,aq] sin(at)/(at) sinh(at)/(at)
Exponential | A >0 A (X —it) AN —1t)
binomial n>1,pe0,1] | Q—p+pe)" | A —p+pe)”
Poisson A>0, A RICESY M=)
Geometric | p € (0,1) (1_(1”_1?)6“ (1_(11’:?)66
first success | p € (0,1) (1_(”16_1,) e (1——-(ple-—p)et
Cauchy meR,b>0 eimt=ltl et

Definition. Let F and G be two probability distribution functions. Their
convolution F x G is defined as

FxG{z) = /RF(Z' —y) dG(y) .

Lemma 2.17.3. If F and G are distribution functions, then F' x G is again
a distribution function.
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Proof. We have to verify the three properties which characterize distribu-
tion functions among real-valued functions as in proposition (2.12.1).

a) Since F is nondecreasing, also F' x G is nondecreasing.

b) Because F(—oo) = 0 we have also F'* G(—00) = 0. Since F(co) = 1 and
dG is a probability measure, also F * G(c0) = 1.

c) Given a sequence h,, — 0. Define F,,(z) = F(x + hy). Because F is con-
tinuous from the right, F,,(z) converges point wise to F(x). The Lebesgue
dominated convergence theorem implies that F, * G(z) = F = G(z + hy)
converges to F' x G(z). O

Example. Given two discrete distributions

= me G(z) = an .

n<zx n<x

Then F+xG(z) =3, <o (p*q)n, where pxq is the convolution of the sequences

p,q defined by (p *x q)n = D p_oPkdn—k. We see that the convolution of
discrete distributions gives again a discrete distribution.

Example. Given two continuous distributions F, G with densities & and k.
Then the distribution of F' x G is given by the convolution

h* k(z) = /Rh(:v —y)k(y) dy
because

(F+6)(@) = 3 [ Plo— ko) dy = [ hio— ko) d

Lemma 2.17.4. If F and G are distribution functions with characteristic
functions ¢ and v, then F' x G has the characteristic function ¢ - ¢.

Proof. While one can deduce this fact directly from Fourier theory, we
prove it by hand: use an approximation of the integral by step functions:

/ei“zd(F*G)(x)
R
N2"
) iuk2— k k-1
’ k=—N2n+1
nNan k—1 )
- m 3 LG - = PR e e
—N2741
N-y
= [ tim / ¢ dP@)e™ d6() = [ ow)e™ dG()
RN—»OO —N—y

= ou)p(u) .
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O

It follows that the set of distribution functions forms an associative com-
mutative group with respect to the convolution multiplication. The reason
is that the characteristic functions have this property with point wise mul-
tiplication.

Characteristic functions become especially useful, if one deals with inde-
pendent random variables. Their characteristic functions multiply:

Proposition 2.17.5. Given a finite set of independent random variables
X;,j = 1,...,n with characteristic functions ¢;. The characteristic func-

tion of 37, X; is ¢ = [[;_, ¢5-

Proof. Since X; are independent, we get for any set of complex valued
measurable functions g;, for which E[g;(X;)] exists:

E[[]g:(X5)] = H Elg; (X;)] -

i=

Proof: This follows almost immediately from the definition of independence
since one can check it first for functions g; = 14,, where A; are o(X;
measurable functions for which g;(X;)gr(Xx) = 14,na, and

E[g;(X;)gx(Xk)] = m(A;)m(Ax) = Elg; (X;)IE[gr(X)] ,

then for step functions by linearity and then for arbitrary measurable func-
tions.

If we put g;(x) = exp(iz), the proposition is proved. O

Example. If X,, are IID random variables which take the values 0 and 2 with
probability 1/2 each, the random variable X = Y -, X, /3" is a random
variable with the Cantor distributionz./sléecause the characteristic function

of Xn is ¢x,, /an(t) = E[eXn/3"] = £ =1, we see that the characteristic
function of X is

0 i2/3%

ox(t) =[] =

i=1
The centered random variable Y = X — 1/2 can be written as ¥ =
% Y, /3", where Y, takes values —1,1 with probability 1/2. So

, . i/3™ —i/3" ot
or(@) = [T B =] e — ] costz) -

n n=1
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This formula for the Fourier transform of a singular continuous measure y
has already been derived by Wiener. The Fourier theory of fractal measures
has been developed much more since then.

Figure. The characteristic func-
tion ¢y (t) of a random variable
Y with a centered Cantor distri- odl
bution supported on [-1/2,1/2] !
has an explicit formula ¢y (t) =
[Toicos(z) and already been
derived by Wiener in the early
20°th century. The formula can
also be used to compute moments
of Y with the moment formula
E[X™] = (=)™ &= ¢x (t)] =0

Corollary 2.17.6. The probability density of the sum of independent ran-
dom variables Z?=1 X is fix fox -+ % fn, if X; has the density f;.

Proof. This follows immediately from proposition (2.17.5) and the alge-
braic isomorphisms between the algebra of characteristic functions with
convolution product and the algebra of distribution functions with point
wise multiplication. O

Example. Let Yj be IID random variables and let X; = A¥Y}, with 0 < A <
1. The process S, = ZZ‘:] X} is called the random walk with variable step
size or the branching random walk with exponentially decreasing steps. Let
p be the law of the random sum X = Y72 | Xy If ¢y (t) is the characteristic
function of Y, then the characteristic function of X is

ox(t) = [] ox(tx™) .

For example, if the random Y, take values —1, 1 with probability 1/2, where
¢y (t) = cos(t), then

ox(t) = H cos(tA™) .

The measure y is then called a Bernoulli convolution. For example, for
-A = 1/3, the measure is supported on the Cantor set as we have seen
above. For more information on this stochastic process and the properties
of the measure i which in a subtle way depends on ), see [41].
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Exercice. Show that X,, — X in distribution if and only if the distribution
functions satisfy ¢x () — ¢x(t) for all t € R.

Exercice. The characteristic function of a vector valued random variable
X = (Xy,....Xg) is the real-valued function

6x(t) =Bl X]

on R*, where we wrote t = (t,...,tx). Two such random variables X,Y
are independent, if the o-algebras X ~1(B) and Y ~!(B) are independent,
where B is the Borel o-algebra on R¥.
a) Show that if X and Y are independent then ¢x 1y = dx - dy.
b) Given a real nonsingular k x k matrix A called the covariance matrix
and a vector m = (mj,...,my) called the mean of X. We say, a vector
valued random variable X has a Gaussian distribution with covariance A
and mean m, if

ox (t) - eim-t—%(b.ﬂlt] )

Show that the sum X + VY of two Gaussian distributed random variables is
again Gaussian distributed.

¢) Find the probability density of a Gaussian distributed random variable
X with covariance matrix A and mean m.

Exercice. The Laplace transform of a positive random variable X > 0 is
defined as Ix(t) = E[e~*X]. The moment generating function is defined as
M(t) = E[e'X] provided that the expectation exists in a neighborhood of
0. The generating function of an integer-valued random variable is defined
as ((X) = E[u¥] for u € (0,1). What does independence of two random
variables X, Y mean in terms of (i) the Laplace transform, (ii) the moment
generating function or (iii) the generating function?

Exercice. Let (2,4, 1) be a probability space and let U,V € A be ran-
dom variables (describing the energy density and the mass density of a
thermodynamical system). We have seen that the Helmholtz free energy

EalU] - KTH]j

(k is a physical constant), T' is the temperature, is taking its minimum for
the exponential family. Find the measure minimizing the free enthalpy or
Gibbs potential

E4lU] - KTHji] - pE,[V]

where p is the pressure.



2.18. The law of the iterated logarithm 117

Exercice. Let (€2, A, u) be a probability space and X; € L random variables.
Compute E,[X;] and the entropy of x in terms of the partition function
Z(A).

Exercice. a) Given the discrete measure space (2 = {eo + né},v), with
€0 € R and § > 0 and where v is the counting measure and let X (k) = k.
Find the distribution f maximizing the entropy H(f) among all measures
i = fv fixing E;[X] =e.

b) The physical interpretation is as follows: Q is the discrete set of ener-
gies of a harmonic oscillator, € is the ground state energy, 0 = hw is the
incremental energy, where w is the frequency of the oscillation and F is
Planck’s constant. X (k) = k is the Hamiltonian and E[X] is the energy.
Put A = 1/kT, where T is the temperature (in the answer of a), there ap-
pears a parameter ), the Lagrange multiplier of the variational problem).
Since can fix also the temperature T instead of the energy ¢, the distribu-
tion in a) maximizing the entropy is determined by w and T'. Compute the
spectrum e(w, T') of the blackbody radiation defined by

ew,T) = (B[X] - eo)#

where c is the velocity of light. You have deduced then Planck’s blackbody
radiation formula.

2.18 The law of the iterated logarithm

We will give only a proof of the law of iterated logarithm in the special
case, when the random variables X, are independent and have all the
standard normal distribution. The proof of the theorem for general IID
random variables X, can be found for example in [105]. The central limit
theorem makes the general result plausible from the special case.

Definition. A random variable X € L is called symmetric if its law px
satisfies:

N([—b’ _a)) = lu’([a’? b))
for all @ < b. A symmetric random variable X € £} has zero mean. We
again use the notation S, = E:zl X}, in this section.

Lemma 2.18.1. Let X,, by symmetric and independent. For every € > 0

P[lrgnka%(n Sk > €] <2P[(Sn > €] .
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Proof. This is a direct consequence of Lévy’s theorem (2.11.6) because we
can take m = 0 as the median of a symmetric distribution. a

Definition. Define for n > 2 the constants A,, = v/2nloglogn. It grows only
slightly faster than v/2n. For example, in order that the factor v/Toglogn
is 3, we already have n = exp(exp(9)) > 1.33 - 103519,

Theorem 2.18.2 (Law of iterated logarithm for N(0,1)). Let X,, be a se-
quence of IID N (0, 1)-distributed random variables. Then

S,
limsup—S—" =1, liminf-= =-1.
n—oo n n—0o0 Ap

Proof. We follow [47]. Because the second statement follows obviously from
the first one by replacing X, by —X,,, we have only to prove

limsup S,/A, =1.

n—o0

(i) P[Sn > (1 + €)A,, infinitely often] = 0 for all € > 0.

Define nix = [(1 +¢€)*] € N, where [z] is the integer part of x and the events
A = {Sn > (1 + €)Ap, for some n € (ng, ng41] }-

Clearly lim supkbA;c = {8, > (1+€)A,, infinitely often}. By the first Borel-

Cantelli lemma (2.2.2), it is enough to show that 3, P[Ax] < co. For each
k, we get with the above lemma

PlAd < Pl mox o> (+ahd
< Pl Sn> (0 ahd

< 2P[Sn,,, > (1+€)Ag].

The right-hand side can be estimated further using that S, ., /\/fk+1
is N(0,1)-distributed and that for a N(0,1)-distributed random variable

P[X > t) < const - e~t*/2

2P[Snk+1 > Ak]

Nhe41
2P[< Snis S (1_+_€)\/2n;c loglog n. ]

V41 k41
1 2ng log 1

< Cexp(—=(1 +¢)?) k08 BTk
2 Ne+1
< Chrexp(~(1+¢€)loglog(nk))

Cilog(ng)~ (9 < Cok~ (149
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Having shown that P[Ax] < const-k~(}+¢) proves the claim 3, P[Ak] < 0.

(ii) P[S, > (1 — €)An, infinitely often] =1 for all € > 0.
It suffices to show, that for all € > 0, there exists a subsequence nx
P[Sn, > (1 — €)A,,, infinitely often] = 1.

Given € > 0. Choose N > 1 large enough and c < 1 near enough to 1 such

that
ev/1-1/N-2/VN>1—¢. (2.10)

Define ny = N* and Anjy = ng — ng—-1. The sets

A = {Sn, — Sni_, > c\/2Any loglog Any}

are independent. In the following estimate, we use the fact that ftoo e==/2 dg >
C - e=t"/2 for some constant C.

P[Ag]

P[{Sn, — Sn,_, > c\/2An loglog Any}]
Snx — Sne_s V2An; loglog Ang

VAN e Ang 1
> C-exp(—c?loglog Ang) = C - exp(—c’ log(klog N))
= C-exp(—c?logk) = Cik~

= Pl

so that 3, P[Ax] = co. We have therefore by Borel-Cantelli a set A of full
measure so that for w € A

S, — Snp_, > ¢\/2An; loglog Ang
for infinitely many k. From (i), we know that
Sni > —24/2n; loglog ny

for sufficiently large k. Both inequalities hold therefore for infinitely many
values of k. For such k,

Sni(w)

Spp_, W) + cv/2Any loglog Any

—2+/2nj_1 loglog nk_1 + cﬂnk log log Any
(=2/VN + ¢y/1 = 1/N)+/2ny loglog ni

(1 — €)v/2ny loglog ni ,

where we have used assumption (2.10) in the last inequality. O

vV IV IV V

We know that N(0,1) is the unique fixed point of the map T' by the central
limit theorem. The law of iterated logarithm is true for T(X) implies that
it is true for X. This shows that it would be enough to prove the theorem
in the case when X has distribution in an arbitrary small neighborhood of
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N(0,1). We would need however sharper estimates.

We present a second proof of the central limit theorem in the IID case, to
illustrate the use of characteristic functions.

Theorem 2.18.3 (Central limit theorem for IID random variables). Given
X, € L% which are IID with mean 0 and finite variance ¢2. Then
Sn/(0+/n) — N(0,1) in distribution.

Proof. The characteristic function of N(0,1) is ¢(t) = e~**/2. We have to
show that for all ¢t € R

E[eitﬂ—s\%] —e /2,
Denote by ¢x, the characteristic function of X,. Since by assumption

E[X,] = 0 and E[X?2] = 02, we have

bx,(t)=1— i';tz +o(t?) .

Therefore

BIeS) = pr (o2
1¢2 1
= (=3 4o
= e"t2/2+o(1).
O

This method can be adapted to other situations as the following example
shows.

Proposition 2.18.4. Given a sequence of independent events A, C Q with
P[An] = 1/n. Define the random variables X,, = 14, and S, = Sore Xk

Then
Sy —log(n)

-~ /log(n)

converges to N(0, 1) in distribution.

Proof.

n

B[Su] = 3 ¢ =1log(n) +7 +o(1),
k=1
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where v = limp_00 Y p_; # — log(n) is the Euler constant.

n

VarlS, Z

k=1

72
= log(n) + v — 3 +0(1) .

?r‘lf-‘
?rl»—*

satisfy E[T,] — 0 and Var[T,,] — 1. Compute ¢x, =1 — Ly % so that
B, (t) = [Ty (1 — £ + %) and 67, () = b, (s())e™ 5", where s =
t/+/log(n). For n — oo, we compute :

logér, () = —ity/log(n)+ ) log(l+ %(eis — 1))

2

= 1 1
—ity/log(n) + Zlog (1 + —(is — =82 + o(5?)))
k=1

|—l

= —ity/log(n ZE zs+—s + o(s?) +O(Zk2
k=1 k=1

= —ity/log(n) + (is — 53 + o(s%))(log(n) + O(1)) + t*0O(1)
= :2—1t2 +o(1) — —%tz :

We see that T, converges in law to the standard normal distribution. O
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Chapter 3

Discrete Stochastic Processes

3.1 Conditional Expectation

Definition. Given a probability space (2, .4,P). A second measure P’ on
(€2, A) is called absolutely continuous with respect to P, if P[A] = 0 implies
P/[A] =0 for all A € A. One writes P’ < P.

Example. If P[a,b] = b — a is the uniform distribution on Q = [0,1] and A
is the Borel o- algebra, and Y € £! satisfies Y(z) > 0 for all z € Q, then

P'la,b] = f Y (z) dz is absolutely continuous with respect to P.

Example. Assume P is again the Lebesgue measure on [0,1] as in the last
example. If Y(z) = 15(z), then P'[4] = P[ANB]forall A € A. If P[B] < 1,
then P is not absolutely continuous with respect to P’. We have P'[B¢] =0
but P[B°] = 1 — P[B] > 0.

Example. If P/[A] = (1) iﬁ ; ﬁ , then P’ is not absolutely continuous

with respect to P. For B = {1/2}, we have P[B] = 0 but P'[B] =1 # 0.

The next theorem is a reformulation of a classical theorem of Radon-
Nykodym of 1913 and 1930.

Theorem 3.1.1 (Radon-Nykodym equivalent). Given a measure P’ which
is absolutely continuous with respect to P, then there exists a unique
Y € £'(P) with P’ = YP. The function Y is called the Radon-Nykodym
derivative of P’ with respect to P. It is unique in L®.

Proof. We can assume without loss of generality that P’ is a positive mea-
sure (do else the Hahn decomposition P = P+ — P~), where P* and P~

123
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are positive measures). »
(i) Construction: We recall the notation E[Y; A] = E[14 Y] = [, Y dP.

Theset I' = {Y > 0| E[Y; A] < P'[A],VA € A} is closed under formation
of suprema

ElY1VY;;4] = E[Y;;An{Yi > Yo} +E[Y2; An{Y2 > Y1}
PIAN{Y; > V3}] + P[ANn{Y> > ¥1}] = P'[4]

AN

and contains a function Y different from 0 since else, P’ would be singular
with respect to P according to the definition (2.15) of absolute continuity.
We claim that the supremum Y of all functions I' satisfies YP = P’: an
application of Beppo-Lévi’s theorem (2.4.1) shows that the supremum of T’
is in I". The measure P” = P’ — YP is the zero measure since we could do
the same argument with a new set I" for the absolutely continuous part of
P/l. R

(i) Uniqueness: assume there exist two derivatives Y,Y’. One has then
EY -Y;{Y >Y'}] =0and so Y > Y’ almost everywhere. A similar
argument gives Y’ < Y almost everywhere, so that Y = Y’ almost every-
where. In other words, Y =Y’ in L'. O

Theorem 3.1.2 (Existence of conditional expectation, Kolmogorov 1933).
Given X € L'(A) and a sub o-algebra B C A. There exists a random
variable Y € £'(B) with [, Y dP = [, X dP for all A € B.

Proof. Define the measures P[A] = P[4] and P'[4] = [, X dP = E[X; 4]
on the probability space (€, B). Given a set B € B with P[B] = 0, then
P/[B] = 0 so that P’ is absolutely continuous with respect to P. Radon-

Nykodym’s theorem (3.1.1) provides us with a random variable Y € £!(B)
with P'[A]ZfAXdpzfAYdP. O

Definition. The random variable Y in this theorem is denoted with E[X|B]
and called the conditional expectation of X with respect to B. The random
variable Y € £*(B) is unique in LY(B). If Z is a random variable, then
E[X]|Z] is defined as E[X|o(Z)]. If {Z}7 is a family of random variables,
then E[X|{Z}7] is defined as E[X|s({Z}T)].

Example. If B is the trivial o-algebra B = {0,}, then E[X|B] = X.
Example. If B = A, then E[X|B] = E[X].
Example. If B = {0,Y,Y°, 2} then

iy Jy X dP for weY,

ElX =
XIB)(w) { —X—f,;(;(zgp for weYe.
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Example. Let (Q,.4,P) = ([0,1} x [0,1], A, dzdy), where A is the Borel
o-algebra defined by the Euclidean distance metric on the square €2. Let B
be the o-algebra of sets A x [0, 1], where A is in the Borel o-algebra of the
interval [0, 1]. If X (z,y) is a random variable on , then Y = E[XB] is the
random variable

Y(z.y) = / X(z,y)dy.

This conditional integral only depends on z.

Remark. This notion of conditional entropy will be important later. Here
is a possible interpretation of conditional expectation: for an experiment,
the possible outcomes are modeled by a probability space (€2, .4) which is
our ”laboratory”. Assume that the only information about the experiment
are the events in a subalgebra B of A. It models the "knowledge” obtained
from some measurements we can do in the laboratory and B is generated by
a set of random variables {Z;}, 7 obtained from some measuring devices.
With respect to these measurements, our best knowledge of the random
variable X is the conditional expectation E[X|B]. It is a random variable
which is a function of the measurements Z;. For a specific ”experiment
w, the conditional expectation E[X|B](w) is the expected value of X (w),
conditioned to the o-algebra B which contains the events singled out by
data from X;.

Proposition 3.1.3. The conditional expectation X — E[X|B] is the projec-
tion from £2(A) onto £*(B).

Proof. The space L?(B) of square integrable B-measurable functions is a
linear subspace of £2(.4). When identifying functions which agree almost
everywhere, then L?(B) is a Hilbert space which is a linear subspace of the
Hilbert space L2(A). For any X € L£2(A), there exists a unique projection
p(X) € £*(B). The orthogonal complement £2(B)* is defined as

LYB)r ={ZeL*A)|(Z2,Y):=E[Z-Y]=0forallY € L*(B) }.
By the definition of the conditional expectation, we have for A € B
(X —E[X|B],14) =E[X —E[X|B]; A] =0.
Therefore X — E[X |B] € £*(B)*. Because the map ¢(X) = E[X|B] satisfies
¢ = g, it is linear and has the property that (1 — ¢)(X) is perpendicular
to £2(B), the map ¢ is a projection which must agree with p. O

Example. Let = {1,2,3,4} and A the o-algebra of all subsets of Q. Let
B={0,{1,3},{2,4},Q}. What is the conditional expectation ¥ = E[X|B]
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of the random variable X (k) = k2? The Hilbert space £2(A) is the four-
dimensional space R* because a random variable X is now just a vector
X = (X(1),X(2),X(3),X(4)) = (1,4,9,16). The Hilbert space £3(B) is
the set of all vectors v = (v, v2,v3,v4) for which v; = vy and vz = vy
because functions which would not be constant in (v, vs) would gener-
ate a finer algebra. It is the two-dimensional subspace of all vectors {v =
(a,a,b,b) | a,b € R }. The conditional expectation projects onto that plane.
The first two components (X (1), X(2)) project to (X(l)}zﬁg)’ x(l)\“/%x(z)),

the second two components project to (ﬂﬁ)-‘}'iﬂ“—), ﬁg;ﬁﬂﬁ) Therefore,

X(1)+X(2) X(1)+X(2) X(3)+X(4) X(3)+X(4)

E[X|B] = ( ) -

Remark. This proposition 3.1.3 means that Y is the least-squares best B-
measurable square integrable predictor. This makes conditional expectation
important for controlling processes. If B is the o-algebra describing the
knowledge about a process (like for example the data which a pilot knows
about an plane) and X is the random variable (which could be the actual
data of the flying plane), we want to know, then E[X|B] is the best guess
about this random variable, we can make with our knowledge.

Exercice. Given two independent random variables X,Y € £2 such that
X has the Poisson distribution Py and Y has the Poisson distribution P,,.
The random variable Z = X + Y has Poisson distribution Py;, as can
be seen with the help of characteristic functions. Let B be the o-algebra
generated by Z. Show that

A
BIXIB] = a2
Hint: It is enough to show
A

Even if random variables are only in L', the next list of properties of
conditional expectation can be remembered better with proposition 3.1.3
in mind which identifies conditional expectation as a projection, if they are
in £2.
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Theorem 3.1.4 (Properties of conditional expectation). For given random
variables X, X,,,Y € L, the following properties hold:

(1) Linearity: The map X — E[X|B] is linear.

(2) Positivity: X > 0 = E[X|B] > 0.

(3) Tower property: C C B C A = E[E[X|B]|C] = E[X|C].

(4) Conditional Fatou: |X,|] < X, E[liminf,_ s Xn|B] <
liminf, o E[X,|B].

(6) Conditional dominated convergence: |X,| < X,X, — X ae.
= E[X,,|B] — E[X|B] a.e.

(6) Conditional Jensen: if h is convex, then E[h(X)|B] > h(E[X|B]).
Especially [E[X|B]l], < [|X]}.

(7) Extracting knowledge: For Z € £L>(B), one has E[ZX|B] = ZE[X|B].

(8) Independence: if X is independent of C, then E[X|C] = E[X].

Proof. (1) For positivity, note that if Y = E[X|B] would be negative on a
set of positive measure, then A =Y ~1([~1/n,0]) € B would have positive
probability for some n. This would lead to the contradiction 0 < E[14X] =
E[14Y] < —n~'m(A) < 0.

(2) Use that P” < P’ < P implies P =Y'P' = Y'Y P and P” < P gives
P" = ZP so that Z = Y'Y almost everywhere.

(3) This is especially useful when applied to the algebra Cy = {0,Y,Ye°,Q}.
Because X <Y almost everywhere if and only if E[X|Cy] < E[Y|Cy] for
allY € B.

(4)-(5) The conditional versions of the Fatou lemma or the dominated
convergence theorem are true, if they are true conditioned with Cy for
each Y € B. The tower property reduces these statements to versions with
B = Cy which are then on each of the sets Y,Y* the usual theorems.

(6) Chose a sequence (an,bn) € R? such that h(z) = sup,, anz + by, for all
x € R. We get from h(X) > a,X + b, that almost surely E[h(X)|G] >
anE[X|G] + b,.. These inequalities hold therefore simultaneously for all n
and we obtain almost surely

E[n(X)|G] 2 sup(anE[X|F] + bs) = H(E[X|G)) .
The corollary is obtained with h(z) = |z|?.

" (7) It is enough to condition it to each algebra Cy for Y € B. The tower
property reduces these statements to linearity.

(8) By linearity, we can assume X > 0. For B€ Band C € C, the random
variables X1p and 1¢ are independent so that

E[X1gno] = E[X1p1¢] = E[X15]P[C] .
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The random variable Y = E[X|B] is B measurable and because Y1z is
independent of C we get

E[(Y1)1¢] = E[Y15]|P[C]
so that E[1pncX] = E{1pncY]. The measures on o(B,C)
p:A—E[laX],v: A E[1,4Y]

agree therefore on the 7-system of the form BN C with Be Band C € C
and consequently everywhere on o(B,C). ]

Remark. From the conditional Jensen property in theorem (3.1.4), it fol-
lows that the operation of conditional expectation is a positive and contin-
uous operation on L? for any p > 1.

Remark. The properties of Conditional Fatou, Lebesgue and Jensen are
statements about functions in £'(B) and not about numbers as the usual
theorems of Fatou, Lebesgue or Jensen.

Remark. Is there for almost all w € Q a probability measure P,, such that
E[X|B](w / XdP,?

If such a map from  to M;(Q) exists and if it is B-measurable, it is called
a regular conditional probability given B. In general such a map w + P,
does not exist. However, it is known that for a probability space (€, A, P)
for which Q is a complete separable metric space with Borel o-algebra A,
there exists a regular probability space for any sub o-algebra B of A.

Exercice. This exercise deals with conditional expectation.

a) What is E[Y|Y]?

b) Show that if E[X|.A] = 0 and E[X|B] = 0, then E[X|o(A, B)] = 0.

c) Given X,Y € L' satisfying E[X|Y] = Y and E[Y|X] = X. Verify that
X =Y almost everywhere,

We add a notation which is commonly used.

Definition. The conditional probability space (2, .4, P[-|B]) is defined by
P[B | B] = E[1g|B] .

For X € L?, one has the conditional moment E[X?|B] = E[X?|B] if B be a
o-subalgebra of A. They are B-measurable random variables and generalize
the usual moments. Of special interest is the conditional variance:

Definition. For X € £?, the conditional variance Var[X|B] is the random
variable E[X?|B] — E[X|B)2. Especially, if B is generated by a random vari-
able Y, one writes Var[X|Y] = E[X?|Y] - E[X|Y]%.
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Remark. Because conditional expectation is a projection, all properties
known for the usual variance hold the more general notion of conditional
variance. For example, if X, Z are independent random variables in L3,
then Var[X + Z|Y] = Var[X|Y] + Var[Z]Y]. One also has the identity
Var[X|Y] = E[(X - E[X|Y])?|Y].

Lemma 3.1.5. (Law of total variance) For X € £* and an arbitrary random
variable Y, one has

Var[X] = E[Var[X Y]] + Var[E[X Y]] .

Proof. By the definition of the conditional variance as well as the properties
of conditional expectation:

Var[X] = E[X?] - E[X]?
= E[E[X?Y]] - EE[X|Y]]?
= E[Var[X|Y]] + E[E[X|Y]?] — E[E[X|Y]]?
= E[Var[X|Y]] + Var[E[X]|Y]] .

d

Here is an application which illustrates how one can use of the conditional
variance in applications: the Cantor distribution is the singular continuous
distribution with the law u has its support on the standard Cantor set.

Corollary 3.1.6. (Variance of the Cantor distribution) The standard Cantor
distribution for the Cantor set on [0,1] has the expectation 1/2 and the
variance 1/8.

Proof. Let X be a random variable with the Cantor distribution. By sym-
metry, E[X] = fol z dp(z) = 1/2. Define the o-algebra

{0,[0,1/3),[1/3,1],[0,1] }

on 2 = [0,1]. It is generated by the random variable Y = 1jg ;/3). Define
Z = E[X|Y]. It is a random variable which is constant 1/6 on [0,1/3)
and equal to 5/6 on [1/3,1]. It has the expectation E[Z] = (1/6)P[Y =
1]+ (5/6)P[Y =0] =1/12+5/12 = 1/2 and the variance

Var[Z] = E[Z?] - E[Z)* = %P[Y =1+ i—zP[Y =0]—-1/4=1/9.
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Define the random variable W = Var[X|Y] = E[X?Y] - E[X|Y]? =
E[X?|Y] — Z. 1t is equal to fol/a(x —1/6)% dz on [0,1/3] and equal to
f21/3 (x —5/6)? dz on [2/3,3/3]. By the self-similarity of the Cantor set, we
see that W = Var[X|Y] is actually constant and equal to Var[X]/9. The
identity E[Var[X|Y]] = Var[X]/9 implies

Var[X] = E[Var[X|Y]] + Var[E[X|Y]] = E[W] + Var[2] = V&“T[X] + % .
Solving for Var[X] gives Var[X] =1/8. a

Exercice. Given a probability space (2, 4, P) and a o-algebra B C A.

a) Show that the map P : X € L' — E[X|B] is a Markov operator from
LY(A,P) to L}(B,Q), where Q is the conditional probability measure on
(Q, B) defined by Q[A] = P[A] for A € B.

b) The map T can also be viewed as a map on the new probability space
(Q, B,Q), where @ is the conditional probability. Denote this new map by
S. Show that S is again measure preserving and invertible.

Exercice. a) Given a measure preserving invertible map T : Q — Q we call
(Q,T,A,P) a dynamical system. A complex number X is called an eigen-
value of T, if there exists X € £ such that X (T) = AX. The map T is said
to have pure point spectrum, if there exists a countable set of eigenvalues
\; such that their eigenfuctions X; span £2. Show that if T has pure point
spectrum, then also S has pure point spectrum.

b) A measure preserving dynamical system (A, S, B, v) is called a factor of a
measure preserving dynamical system (Q, 7T, A, u) if there exists a measure
preserving map U : Q — A such that SoU(z) = UoT(z) for all x € Q. Ex-
amples of factors are the system itself or the trivial system (€2, S(z) = z, u).
If S is a factor of T and T is a factor of S, then the two systems are called
isomorphic. Verify that every factor of a dynamical system (2, T, A, ) can
be realized as (Q, T, B, ) where B is a o-subalgebra of A.

¢) It is known that if a measure preserving transformation T" on a proba-
bility space has pure point spectrum, then the system is isomorphic to a
translation on the compact Abelian group G which is the dual group of the
discrete group G formed by the spectrum o(T) C T. Describe the possible
factors of T and their spectra.

Exercice. Let £ = T! be the one-dimensional circle. Let A be the Borel o-
algebra on T! = R/(27Z) and P = dx the Lebesgue measure. Given k € N,
denote by By the o-algebra consisting of all A € A such that A + "27" =
A (mod 27) for all 1 < n < k. What is the conditional expectation E[X|By]
for a random variable X € £'?
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3.2 Martingales

It is typical in probability theory is that one considers several o-algebras on
a probability space (€2, A, P). These algebras are often defined by a set of
random variables, especially in the case of stochastic processes. Martingales
are discrete stochastic processes which generalize the process of summing
up IID random variables. It is a powerful tool with many applications.

Definition. A sequence {A,},en of sub o-algebras of A is called a fil-
tration, if 49 C A, C --- € A. Given a filtration {A, }.en, one calls
(Q,A,{An}nen, P) a filtered space.

Example. If Q = {0,1}" is the space of all 0 — 1 sequences with the Borel
o-algebra generated by the product topology and A, is the finite set of
cylinder sets A = {z; = ay,...,2, = a, } with a; € {0,1}, which contains
2" elements, then {A, },cn is a filtered space.

Definition. A sequence X = {X,},en of random variables is called a dis-
crete stochastic process or simply process. It is a LP-process, if each X,
is in £P. A process is called adapted to the filtration {A, } if X,, is A,-
measurable for all n € N.

Example. For Q = {0,1}" as above, the process X, (z) = [[i_, z; is
a stochastic process adapted to the filtration. Also S,(z) Yo i is
adapted to the filtration.

Il

Definition. A £'-process which is adapted to a filtration {A,} is called a
martingale if
E[an-An—ll = X'I’l'-l

for all n > 1. It is called a supermartingale if E[X,,|A,-1] < X,-; and a
submartingale if E[X,|A,,—i] > X,,_;. If we mean either submartingale or
supermartingale (or martingale) we speak of a semimartingale.

Remark. It immediately follows that for a martingale

E[X"IAm] — Xm
if m < n and that E[X,] is constant. Allan Gut mentions in [34] that a
martingale is an allegory for "life” itself: the expected state of the future

given the past history is equal the present state and on average, nothing
happens.
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Figure. A random variable X on the unit square defines a gray scale picture
if we interpret X (z,y) is the gray value at the point (x,y). It shows Joseph
Leo Doob (1910-2004), who developed basic martingale theory and many
applications. The partitions A, = {[k/2"(k +1)/2") x [j/2"(F +1)/2")}
define a filtration of 2 = [0,1] x [0,1]. The sequence of pictures shows the
conditional expectations E[X,,|A,]. It is a martingale.

Exercice. Determine from the following sequence of pictures, whether it is
a supermartingale or a submartingale. The images get brighter and brighter

in avegage as the resolution becomes better.

Definition. If a martingale X,, is given with respect to a filtered space
A, =0(Yo,...,Yy,), where Y, is a given process, X is is called a martingale
with respect Y.

Remark. The word "martingale” means a gambling system in which losing
bets are doubled. It is also the name of a part of a horse’s harness or a belt
on the back of a man’s coat.

Remark. If X is a supermartingale, then —X is a submartingale and vice
versa. A supermartingale, which is also a submartingale is a martingale.
Since we can change X to X — X without destroying any of the martingale
properties, we could assume the process is null at 0 which means X, = 0.

Exercice. a) Verify that if X, Y, are two submartingales, then sup(X,Y’)
is a submartingale.

b) If X,, is a submartingale, then E[X,] < E[X,_1].

¢) If X, is a martingale, then E[X,] = E[X,_1].

Remark. Given a martingale. From the tower property of conditional ex-
pectation follows that for m < n

E[an-A‘m,] = E[E[anAn—I]LA*m} = E[Xn—llAm] i — E[Xm] z
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Example. Sum of independent random variables

Let X; € L' be a sequence of independent random variables with mean

E[X] = 0. Define Sp = 0,5, = Y 5y Xk and A, = o(Xy,.. , Xy) with
= {0,Q}. Then S, is a martingale since S, is an {An}- adapted cl-

process and

E[Sn|~An—1] = E[Sn—l|An—1] + E[Xn|-An—1] - Sn—l + E[Xn] = Sn—l .

We have used linearity, the independence property of the conditional ex-
pectation.

Example. Conditional expectation

Given a random variable X € £' on a filtered space (2, A, {An}nen, P).
Then X, = E[X|A,] is a martingale.

Especially: given a sequence Y, of random variables. Then A, = o(Yo,...,Yn)
is a filtered space and X, = E[X|Yo, ..., Y] is a martingale. Proof: by the
tower property

B[Xo|Yo,-. ., Yo_1] = Bl[XalYo,...,Y]Yo,- .-, Yno1]
= E[anybv . -»Yn—l] = Xn-1

We say X is a martingale with respect to Y. Note that because X, is by
definition o(Yp, . . ., Y;,)-measurable, there exist Borel measurable functions
hy, : R*1 — R such that X,, = hn(Yo,. .., Yn-1).

Example. Product of positive variables

Given a sequence Y, of independent random variables Y,, > 0 satisfying
with E[Y,] = 1. Define Xo = 1 and X, =1, Y: and A =0a(Yi,...,Yn).
Then X, is a martingale. This is an exercise. Note that the martingale
property does not follow directly by taking logarithms.

Example. Product of matrix-valued random variables

Given a sequence of independent random variables Z,, with values in the
group GL(N,R) of invertible N x N matrices and let A, = 0(Z1,...,Zn).
Assume Eflog||Z,||] < 0, if ||Z,|| denotes the norm of the matrix (the
square root of the maximal eigenvalue of Z, - Z};, where Z is the adjoint).
Define the real-valued random variables X,, = log||Z; - Z2 - - - Zy||, where -
denotes matrix multiplication. Because X,, < log || Zn|| + Xn—1, We get

E[Xn|An-1]

IA

Ellog||Zall | An-1] + E[Xn-1|An-1]
= Ellog||Znl]] + Xn-1 < Xn—1

so that X, is a supermartingale. In ergodic theory, such a matrix-valued
process X, is called sub-additive.

Example. If Z,, is a sequence of matrix valued random variables, we can
also look at the sequence of random variables Y, = ||Z1 - Z3--- Zy||. If
E[||Z,||] = 1, then Y, is a supermartingale.
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Example. Polya’s urn scheme

An urn contains initially a red and a black ball. At each time n > 1, a
ball is taken randomly, its color noted, and both this ball and another
ball of the same color are placed back into the urn. Like this, after n
draws, the urn contains n + 2 balls. Define Y,, as the number of black balls
after n moves and X,, = Y, /(n + 2), the fraction of black balls. We claim
that X is a martingale with respect to Y: the random variables Y, take
values in {1,...,n + 1}. Clearly P[Y,41 =k +1]Y, = k] = k/(n + 2) and
P[Yoi1 = k|Y, = k] =1 — k/(n + 2). Therefore

1
E[Xn+1|Y17"'aYn] = mE[Yn+l|)/1a'-'3Yn]
1 .
= 3t =k+ 1Y, = k] PYo]
+P[Ypp1 = k | Y, = k] - P[Y,]
= asla s H - 2m5)]
T on+2 TN

Note that X, is not independent of X,,_;. The process "learns” in the sense
that if there are more black balls, then the winning chances are better.

Q000000
00000000
0000000C0O
0000000000

Figure. A typical run of 30
experiments with Polya’s urn
scheme.

Example. Branching processes
Let Z,; be IID, integer-valued random variables with positive finite mean
m. Define Yy = 1 and

k=1

with the convention that for Y,, = 0, the sum is zero. We claim that X,, =
Y,,/m™ is a martingale with respect to Y. By the independence of ¥, and
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Zniyt > 1, we have for every n

Yn Yo
EYnt1|Yo, .-, Ya] = E[Y ZuklYo, ..., Ya] = E[D_ Znk] = m¥a
k=1 k=1

so that
E[Xpns1|Y0, ..., Y] = ElYnt1]Yo, ... Yal/m" ! = mYy /m™* = X,

The branching process can be used to model population growth, disease
epidemic or nuclear reactions. In the first case, think of Y, as the size of a
population at time n and with Z,; the number of progenies of the 1 — th
member of the population, in the n’th generation.

Figure. A typical growth of Y,
of a branch process. In this ex-
ample, the random variables Zy;
had a Poisson distribution with
mean m = 1.1. It is possible that
the process dies out, but often, it
grows exponentially.

,‘,,,,.,....umlllll””““”

Proposition 3.2.1. Let A, be a fixed filtered sequence of o-algebras. Lin-
ear combinations of martingales over A, are again martingales over Ap,.
Submartingales and supermartingales form cones: if for example X,Y are
submartingales and a,b > 0, then aX + bY is a submartingale.

Proof. Use the linearity and positivity of the conditional expectation. [

Proposition 3.2.2. a) If X is a martingale and u is convex such that u(X,) €
£, then Y = u(X) is a submartingale. Especially, if X is a martingale,
then | X| is a submartingale.

b) If u is monotone and convex and X is a submartingale such that u(Xy,) €
L', then u(X) is a submartingale.
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Proof. a) We have by the conditional Jensen property (3.1.4)

Yo =u(X,) = WE[Xpt1]An]) < E[u(Xnt1)|An] = E[Ynt1] |An] -

b) Use the conditional Jensen property again and the monotonicity of u to
get

Yo =u(X,) < u(E[Xpt1|An]) < Elu(Xn41)lAn] = E[Yn+1] |Ar] .
O

Definition. A stochastic process C = {C,.}nzl is called previsible if C,, is
An—1-measurable. A process X is called bounded, if X,, € £ and if there
exists K € R such that ||X,||co < K for all n € N.

Definition. Given a semimartingale X and a previsible process C, the pro-
cess

(/C dX)n =Y Cr(Xk — Xi-1) .
k=1

It is called a discrete stochastic integral or a martingale transform.

Theorem 3.2.3 (The system can’t be beaten). If C is a bounded nonnega-
tive previsible process and X is a supermartingale then J C dX is a super-
martingale. The same statement is true for submartingales and martingales.

Proof. Let Y = [ C dX. From the property of ”extracting knowledge” in
theorem (3.1.4), we get

E[Yn_Yn—ll-An-l] = E[Cn(Xn_Xn—l)I-An—I] = Cn’E[Xn_Xn—llAn—ll < 0
because C), is nonnegative and X, is a supermartingale. a

Remark. If one wants to relax the boundedness of C, then one has to
strengthen the condition for X. The proposition stays true, if both C' and
X are £2-processes.

Remark. Here is an interpretation: if X,, represents your capital in a game,
then X, — X,,_; are the net winnings per unit stake. If C, is the stake on
game n, then

/c dX =Y Ci(Xk — Xp-1)
k=1

are the total winnings up to time n. A martingale represents a fair game
since E[X,, — X,,_1]4,_1] = 0, whereas a supermartingale is a game which
is unfavorable to you. The above proposition tells that you can not find a
strategy for putting your stake to make the game fair.



3.2. Martingales 137

Figure. In this example, X, =

+1 with probability 1/2 and )
Cn = 1 if Xn_1 is even and i
Cn =0 if X,,_1 is odd. The orig- o .
inal process X, is a symmetric ST
random walk and so a martin-
gale. The new process f CdX is i
again a martingale. . s

Exercice. a) Let Y7,Y2,... be a sequence of independent non-negative ran-
dom variables satisfying E[Y;] = 1 for all k¥ € N. Define Xy = 1, X,, =
Y,---Y, and A, =o(Y1,Y2,...,Y,). Show that X,, is a martingale.

b) Let Z, be a sequence of independent random variables taking values in
the set of n x n matrices satisfying E[||Z,]|] = 1. Define Xy = 1, X, =
[|Z1 -+ Znl||. Show that X, is a supermartingale.

Definition. A random variable T with values in N = N U {oo} is called
a random time. Define Ay, = o({J,>¢An)- A random time T is called a
stopping time with respect to a filtration A,, if {T < n} € A, for all
n € N.

Remark. A random time T is a stopping time if and only if {T'=n } € A,
for all n € N since {T < n} = Uy {T = k} € As.

Remark. Here is an interpretation: stopping times are random times, whose
occurrence can be determined without pre-knowledge of the future. The
term comes from gambling. A gambler is forced to stop to play if his capital
is zero. Whether or not you stop after the n—th game depends only on the
history up to and including the time n.

Example. First entry time.
Let X, be a A,-adapted process and given a Borel set B € B in R%. Define

T(w) = inf{n > 0 | X,(w) € B}
which is the time of first entry of X,, into B. The set {T = oo} is the set
which never enters into B. Obviously
n
{T <n}= U{XkGB} €A,
4 k=0

so that T is a stopping time.
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Example. ” Continuous Black-Jack”: let X; be IID random variables with
uniform distribution in [0,1]. Define S, = >_;_, X; and let T'(w) be the
smallest integer so that S,(w) > 1. This is a stopping time. A popular
problem asks for the expectation of this random variable T: How many
"cards” X; do we have to draw until we get busted and the sum is larger
than 1?7 We obviously have P[T' = 1] = 0. Now, P[T = 2] = P[X; > 1 X}]
is the area of region {(z,y) € [0,1] x [0,1] | y > 1 — z } which is 1/2.
Similarly P[T = 3] = P[X3 > 1 — X; — X;] is the volume of the solid
{(z,y,2) € [0,1* | 2 > 1 —z — y } which is 1/6 = 1/3!. Inductively we
see P[T" = k] = 1/k! and the expectation of T is E[T] = 372, k/k! =
Yoo 1l/k! = e. This means that if we play Black-Jack with uniformly
distributed random variables and threshold 1, we expect to get busted in
more than 2, but less than 3 ”cards”.

Example. Last exit time.
Assume the same setup as in 1). But this time
T(w) =sup{n > 0| X,(w) € B}

is not a stopping time since it is impossible to know that X will return to
B after some time k& without knowing the whole future.

Proposition 3.2.4. Let 77, 7> be two stopping times. The infimum T} A T5,
the maximum 77 V T3 as well as the sum 77 + T3 are stopping times.

Proof. This is obvious from the definition because A,,-measurable functions
are closed by taking minima, maxima and sums. d

Definition. Given a stochastic process X,, which is adapted to a filtration
Ar, and let T be a stopping time with respect to A,, define the random

variable ¥ ( Tw)
W) , Tw) <oo
Xr(w) = { T(()) ) ,else

or equivalently X7 = >">° Xnl{r=n}- The process XT = Xppp is called
the stopped process. It is equal to X for times T < n and equal to X, if
T>n.

Proposition 3.2.5. If X is a supermartingale and T is a stopping time, then
the stopped process X7 is a supermartingale. In particular E[X 7] < E[X).
The same statement is true if supermartingale is replaced by martingale in
which case E[XT] = E[X,].
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Proof. Define the ”stake process” c() by C,(lT) = ln<7. You can think of
it as betting 1 unit and quit playing immediately after time T'. Define then
the ”winning process”

(/C(T) dX)n = ZCk(Xk - Xk_l) = XT/\n - XO .
k=1

or shortly [ CT) dX = X1 — Xy. The process C is previsible, since it can

only take values 0 and 1 and {C{"’ =0} = {T <n—1} € An_;. The claim
follows from the ”system can’t be beaten” theorem. a

Remark. It is important that we take the stopped process X7 and not the
random variable Xr:

for the random walk X on Z starting at 0, let T" be the stopping time
T =inf{n | X, = 1 }. This is the martingale strategy in casino which gave
the name of these processes. As we will see later on, the random walk is
recurrent P[T < oo] = 1 in one dimensions. However

1 = E[X7] # E[Xo] = 0.
The above theorem gives E[XT] = E[X).

When can we say E[X7]| = E[X0]? The answer gives Doob’s optimal stop-
ping time theorem:

Theorem 3.2.6 (Doob’s optimal stopping time theorem). Let X be a
supermartingale and T be a stopping time. If one of the five following
conditions are true

(i) T is bounded.

(i) X is bounded and T is almost everywhere finite.

(iii) T € £' and |X,, — X,,_;| is bounded.

(iv) X7 € £! and limg_, E[Xx; {T > k}] = 0.

(v) X is uniformly integrable and T is almost everywhere finite.

then E[X7] < E[X].
If X is a martingale and any of the five conditions is true, then E[X7] =
E[Xo].

Proof. We know that E[X7a, — Xg] < 0 because X is a supermartingale.
(1) Because T is bounded, we can take n = sup T'(w) < oo and get

E[XT - Xo] = E[XT,\n - Xo] <0.
(ii) Use the dominated convergence theorem to get

lim E[XT/\n - XO] S 0.
n—00
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(iii) We have a bound |X,, — X,,_1| < K and so

TAn :
| Xran = Xol =D Xk — Xx—1| < KT
k=1

Because KT € £, the result follows from the dominated convergence the-
orem.

(iv) By (i), we get E[Xo] = E[X7ax] = E[X7; {T < k}] + E[Xx; {T > k}]
and taking the limit gives E[Xo] = limp_,o E[Xk; {T < k}] — E[X7] by
the dominated convergence theorem and the assumption.

(v) The uniformly integrability E[|X,|;|X,| > R] — 0 for R — oo assures
that X7 € L' since E[|X7|] < k - max;<i<n E[|Xk|] + sup,, E[| Xa|; {T >
k}] < oo. Since |E[Xy; {T > k}]| < sup, E[|X.|;{T > k}] — 0, we can
apply (iv).

If X is a martingale, we use the supermartingale case for both X and
-X. O

Remark. The interpretation of this result is that a fair game cannot be
made unfair by sampling it with bounded stopping times.

Theorem 3.2.7 (No winning strategy). Assume X is a martingale and sup-
pose | X,,— X, _1| is bounded. Given a previsible process C which is bounded
and let T € £* be a stopping time, then E[(f CdX)r] =0.

Proof. We know that [ C dX is a martingale and since ([ C dX)o = 0, the
claim follows from the optimal stopping time theorem part (iii). O

Remark. The martingale strategy mentioned in the introduction shows
that for unbounded stopping times, there is a winning strategy. With the
martingale strategy one has T' = n with probability 1/2™. The player always
wins, she just has to double the bet until the coin changes sign. But it
assumes an ”infinitely thick wallet”. With a finite but large initial capital,
there is a very small risk to lose, but then the loss is large. You see that in
the real world: players with large capital in the stock market mostly win,
but if they lose, their loss can be huge.

Martingales can be characterized involving stopping times:
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Theorem 3.2.8 (Komatsu’s lemma). Let X be an .A,-adapted sequence of
random variables in £! such that for every bounded stopping time T

E[X7] = E[Xo],

then X is a martingale with respect to A,.

Proof. Fix n € Nand A € A,. The map

n weA
T_n+1_1A—{ n+l wé¢A
is a stopping time because o(T) = {0, 4, A°,Q } C A,. Apply E[X7] =
E[X,] and E[X1/] = E[X(] for the bounded constant stopping time T =
n+ 1 to get

E[Xn,A] + E[Xn+1;Ac] = E[XT] = E[Xo] = E[XT/] = E[Xn+1]
= E[Xny1; Al + E[Xp41; A9

so that E[X,,41; A] = E[X,,; A]. Since this is true, for any A € A,, we know
that E[X,11|A,] = E[X,|A,] = X, and X is a martingale. O

Example. The gambler’s ruin problem is the following question: Let Y; be
IID with P[Y; = +£1] = 1/2 and let X, = > ,_; ¥; be the random walk
with Xo = 0. We know that X is a martingale with respect to Y. Given
a,b > 0, we define the stopping time

T=min{n>0|X,=b,or X,=-a}.

We want to compute P[ X7 = —a| and P[ Xt = b] in dependence of a, b.

Figure. Three samples of a pro-
cess X, starting at Xg = 0.
The process is stopped with the
stopping time T, when X, hits
the lower bound —a or the upper
bound b. If X, is the winning of a
first gambler, which is the loss of
a second gambler, then T is the
time, for which one of the gam-
blers is broke. The initial capital
of the first gambler is a, the ini-
tial capital of the second gambler
is b.
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Remark. If Y; are the outcomes of a series of fair gambles between two
players A and B and the random variables X,, are the net change in the
fortune of the gamblers after n independent games. If at the beginning, A
has fortune @ and B has fortune b, then P{X7 = —a] is the ruin probability
of A and P[X7 = b] is the ruin probability of B.

Proposition 3.2.9.

P[XTI—a]Zl—P[XT=b]:(a+b) .

Proof. T is finite almost everywhere. One can see this by the law of the
iterated logarithm,

X . X
limnsupA—n =1, limnlan—: =-1.

(We will give later a direct proof the finiteness of 7', when we treat the
random walk in more detail.) It follows that P[X7 = —a] = 1 — P[ X7 = b)].
We check that X} satisfies condition (7v) in Doob’s stopping time theorem:
since Xr takes values in {a,b }, it is in £ and because on the set {T > k },
the value of Xy is in (—a,b), we have |E[Xy; {T > k }]| < max{a, b}P[T >
k] — 0. |

Remark. The boundedness of T is necessary in Doob’s stopping time the-
orem. Let T = inf{n | X, = 1 }. Then E[X7] = 1 but E[X,] = 0] which
shows that some condition on T or X has to be imposed. This fact leads
to the "martingale” gambling strategy defined by doubling the bet when
loosing. If the casinos would not impose a bound on the possible inputs,
this gambling strategy would lead to wins. But you have to go there with
enough money. One can see it also like this, If you are A and the casino is
B and b =1, a = oo then P[Xr = b] = 1, which means that the casino is
ruined with probability 1.

Theorem 3.2.10 (Wald’s identity). Assume 7T is a stopping time of a £!-
process Y for which Y; are IID random variables with expectation E[Y;] = m
and T € L. The process S, = 3 r_, Yi satisfies

E[Sr] = mE[T] .
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Proof. The process X, = S, — nE[Y3] is a martingale satisfying condition
(iii) in Doob’s stopping time theorem. Therefore

0 = E[Xo] = E[X7] = E[Sr - TE[Y1]] -
Now solve for E[ST]. : 0

3.3 Doob’s convergence theorem

Definition. Given a stochastic process X and two real numbers a < b, we
define the random variable

Upla,bl(w) = max{keN|3
0<s1<t1 << <txg <m,
X, (w) < a, Xy, (w) >b,1<i<k}

called the number of up-crossings of [a, b]. Denote with Ux|a, b] the limit
Usola,b] = lim Uyla,b] .

Because n — Up|a, b] is monotone, this limit exists in N U {oo}.

Figure. A random walk crossing
two values a < b. An up-crossing
is a time s, where Xy < a un-
til the time, when the first time
X: > b. The random wvariable
Unla,b] with values in N mea-
sures the number of up-crossings
in the time interval [0,n].

Theorem 3.3.1 (Doob’s up-crossing inequality). If X is a supermartingale.
Then

(b —a)E[Uyla,b]] <E[(X, —a)7].

Proof. Define C1 = 1{x,<q} and inductively for n > 2 the process

Cn = lcp=13{xna<6} + HCuoi=0} 1 {X0o1<a } -
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It is previsible. Define the winning process ¥ = f € dX which satisfies by
definition Yy = 0. We have the winning inequality

Yn(w) 2 (b - a’)Un[a» b](w) - (Xn(w) - a)_ .

Every up-crossing of [a, b] increases the Y-value (the winning) by at least

(b — a), while (X, — a)~ is essentially the loss during the last interval of

play.

Since C is previsible, bounded and nonnegative, we know that Y, is also a

supermartingale (see ”the system can’t be beaten”) and we have therefore

E[Y,] < 0. Taking expectation of the winning inequality, gives the claim.
O

Remark. The proof uses the following strategy for putting your stakes C-
wait until X gets below a. Play then unit stakes until X gets above b and
stop playing. Wait again until X gets below o, etc.

Definition. We say, a stochastic process X, is bounded in LP, if there exists
M € R such that || X,||, < M for all n € N.

Corollary 3.3.2. If X is a supermartingale which is bounded in £}. Then

P[Uso[a,b] = 00] = 0.

Proof. By the up-crossing lemma, we have for each n € N

(b~ @)E{Un[a, b)) < la] + E[|Xnl] < [a] + sup | Xnlly < oo

By the dominated convergence theorem
(b— a)E[Usla,b]] < 00,
which gives the claim. d

Remark. If 5, = Z:zl X4 is the one dimensional random walk, then it is
a martingale which is unbounded in LY. In this case, E[Ux|a,b]] = co.

Theorem 3.3.3 (Doob’s convergence theorem). Let Xn, be a supermartingale
which is bounded in £'. Then

Xoo = lim X,

n—o0

exists almost everywhere.
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Proof.
A = {we Q| X, hasno limit in [—o00,00] }

= {we Q| liminf X,, < limsup X, }

= U {we Q| liminf X,, < a < b < limsup X, }
a<b,a,beQ

Aoy

a<b,a,beQ

Since Agp C {Usla,b] = oo } we have P[Ag] = 0 and therefore also
P[A] = 0. Therefore Xo, = lim,_,oc X, exists almost surely. By Fatou’s
lemma

E[|Xx|] = E[liminf | X,|) < liminf E[|X,|] < supE[|X,|] < 0o

so that P[ X < 00] = 1. O

Example. Let X be a random variable on ([0,1),.4,P), where P is the
Lebesgue measure. The finite o-algebra A,, generated by the intervals

kE k+1

Ae=lpn 5

defines a filtration and X,, = E[X|.A,] is a martingale which converges. We
will see below with Lévys upward theorem (3.4.2 that the limit actually is
the random variable X.

Example. Let Xj be IID random variables in £'. For 0 < A < 1, the
branching random walk S, = Y} _, Ak X is a martingale which is bounded
in £ because

1
1alls < == 1 Xolls

The martingale converges by Doob’s convergence theorem almost surely.
One can also deduce this from Kolmogorov’s theorem (2.11.3) if X}, € £2.
Doobs convergence theorem (3.3.3) assures convergence for X € L.

Remark. Of course, we can replace supermartingale by submartingale or
martingale in the theorem.

Example. We look again at Polya’s urn scheme, which was defined earlier.
Since the process Y giving the fraction of black balls is a martingale and
bounded 0 < Y < 1, we can apply the convergence theorem: there exists
Yo with Y, — Y.

Corollary 3.3.4. If X is a non-negative supermartingale, then X, =
lim,_,c0 X, exists almost everywhere and is finite.
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Proof. Since the supermartingale property gives E[|X,|] = E[X,,] < E[X,],
the process X,, is bounded in £!. Apply Doob’s convergence theorem. O

Remark. This corollary is also true for non-positive submartingales or mar-
tingales, which are either nonnegative or non-positive.

Example. For the Branching process, we had IID random variables Zni
with positive finite mean m and defined Y, = 0, Yol = 21111 Znk. We
saw that the process X,, = Y;,/m™ is non-negative and a martingale. Ac-
cording to the above corollary, the limit X, exists almost everywhere. It
is an interesting problem to find the distribution of X.: Assume Z,,; have
the generating function f(8) = E[#%~].

(1) Y, has the generating function f™(8) = f(f"1)(6).
We prove this by induction. For n = 1 this is trivial. Using the independence

of Z,1. we have
E[0"+]Y, = k] = f(6)

and so
E[0Y|Y,] = f(6)% .

By the tower property, this leads to
E[6+] = E[f(6)7"] .
Write a = f(6) and use induction to simplify the right hand side to
E[f(6)"™] = Ela™] = f*(a) = f"(f(6)) = f**(9) .

(ii) In order to find the distribution of X, we calculate instead the char-
acteristic function

L)) = L(Xo)(A) = Elexp(iAXo0)] -

Since X, — X almost everywhere, we have L(X,)(A) — L(Xe0)(A).
Since X, =Y,/m™ and E[#¥"] = f*(8), we have

L(Xn)(A) = fr(e™™)
so that L satisfies the functional equation
L(xm) = f(L(N)) .

Theorem 3.3.5 (Limit distribution of the branching process). For the
branching process defined by IID random variables Z,; having the gen-
erating function f, the Fourier transform L()\) = E[e?*X] of the distribu-
tion of the limit martingale X, can be computed by solving the functional
equation

L(A-m) = f(L(N)) .
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Remark. If f has no analytic extension to the complex plane, we have to
replace the Fourier transform with the Laplace transform

L()) = E[e7 ] .

Remark. Related to Doob’s convergence theorem for supermartingales is
Kingman’s subadditive ergodic theorem, which generalizes Birkhoff’s er-
godic theorem and which we state without proof. Neither of the two theo-
rems are however corollaries of each other.

Definition. A sequence of random variables X, is called subadditive with
respect to a measure preserving transformation T', if Xonan < X+ X0 (T™)
almost everywhere.

Theorem 3.3.6 (The subadditive ergodic theorem of Kingmann). Given a
sequence of random variables, which X, : X — RU {—oo} with X} :=
max(0, X,,) € L*(X) and which is subadditive with respect to a measure
preserving transformation 7. Then there exists a T-invariant integrable
measurable function X : @ — RU {—oc} such that X X,(z) — X(x) for
almost all z € X. Furthermore 2E[X,] — E[X].

n

If the condition of boundedness of the process in Doob’s convergence the-
orem is strengthened a bit by assuming that X, is uniformly integrable,
then one can reverse in some sense the convergence theorem:

Theorem 3.3.7 (Doob’s convergence theorem for uniformly integrable su-
permartingales). A supermartingale X, is uniformly integrable if and only
if there exists X such that X,, — X in £

Proof. If X, is uniformly integrable, then X, is bounded in £} and Doob’s
convergence theorem gives X, — X almost everywhere. But a uniformly
integrable family X, which converges almost everywhere converges in cr.
On the other hand, a sequence X, € L! converging to X € £} is uniformly
integrable. O

Theorem 3.3.8 (Characterization of uniformly integrable martingales). An

An-adapted process is an uniformly integrable martingale if and only if
X, - X in £ and X, = E[X|A4,].
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Proof. By Doob’s convergence theorem for uniformly integrable supermartin-
gales (3.3.7), we know the ”if’-part. We already know that X, = E[X|A,]
is a martingale. What we have to show is that it is uniformly integrable.
Given € > 0. Choose ¢ > 0 such that for all A € A, the condition P[A] < ¢
implies E[|X|; 4] < e. Choose further K € R such that K~ - E[|X|] < 4.
By Jensen’s inequality

[ Xn| = |E[X]An]| < E[|X||An] <E[IX]] .

Theretfore
K -P|X,| > K| <E[[X,[] <E[X]| <é-K

so that P[|X,| > K] < 4. By definition of conditional expectation , | X,| <
E[|X||An] and {|X,| > K} € A,

E[|Xnl; | Xn| > K] < E[|X];|Xn| > K] <€.
O

Remark. As a summary we can say that supermartingale X,, which is either
bounded in £! or nonnegative or uniformly integrable converges almost
everywhere.

Exercice. Let S and T be stopping times satisfying S < T.
a) Show that the process

Cn(w) = 1{5(w)<n<T(w)}

is previsible.
b) Show that for every supermartingale X and stopping times S < T the
inequality

E[XT1] < E[X}]

holds.

Exercice. In Polya’s urn process, let Y, be the number of black balls after
n steps. Let X,, = Y,,/(n + 2) be the fraction of black balls. We have seen
that X is a martingale.

a) Prove that P[Y, =k]=1/(n+1) forevery 1 <k <n+ 1.

b) Compute the distribution of the limit X.

Exercice. a) Which polynomials f can you realize as generating functions
of a probability distribution? Denote this class of polynomials with P.

b) Design a martingale X, where the iteration of polynomials P € P plays
a role.
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¢) Use one of the consequences of Doob’s convergence theorem to show
that the dynamics of every polynomial P € P on the positive axis can be
conjugated to a linear map T : z — mz: there exists a map L such that

LoT(z) = PoL(2)

for every z € RY.

Example. The branching process Yn41 = EZ;I Zni defined by random
variables Z,; having generating function f and mean m defines a mar-
tingale X, = Y,/m™. We have seen that the Laplace transform L()) =
E[e~*X] of the limit X, satisfies the functional equation

L(mA) = f(L(Y) -

We assume that the ITD random variables Z,,; have the geometric distribu-
tion P[Z = k] = p(1—p)* = pg* with parameter 0 < p < 1. The probability
generating function of this distribution is

£(6) = qu

1—q0

As we have seen in proposition (2.12.5),

E[Z] =) pdk ==
k=1

The function f™(#) can be computed as

neg _ PMt(1—0)+g6—p
0= =0 v —p

This is because f is a Mobius transformation and iterating f corresponds

n
to look at the power A" = [ _Oq 11) ] . This power can be computed by

diagonalisating A:

-1 p L op Pt 0 q -p
=la-p) [1 qHO q"H—l 1]
We get therefore

L()) = Efe™X=] = lim E[e™/™"] = lim fu(e}™") = PAYd-p.
n—co gAt+q-p
If m < 1, then the law of X, is a Dirac mass at 0. This means that the
process dies out. We see that in this case directly that lim,_, fr(6) = 1.In
the case m > 1, the law of X, has a point mass at 0 of weight p/g =1/m
and an absolutely continuous part (1/m — 1)2e(t/m=12z dz. This can be
seen by performing a ”look up” in a table of Laplace transforms

L) = Ze0 4 / (1 - p/q)2e®/1D= . =% dg
0
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Definition. Define p, = P[Y,, = 0], the probability that the process dies
out until time n. Since p, = f™(0) we have p,41 = f(pn).- If f(p) =p, pis
called the extinction probability.

Proposition 3.3.9. For a branching process with E[Z] > 1, the extinction
probability is the unique solution of f(z) = z in (0,1). For E[Z] < 1, the
extinction probability is 1.

Proof. The generating function f(f) = E[§?] = Yo" (P[Z = n]f™ =
>, Prb™ is analytic in [0,1]. It is nondecreasing and satisfies f(1) = 1.
If we assume that P[Z = 0] > 0, then f(0) > 0 and there exists a unique
solution of f(z) = z satisfying f’(z) < 1. The orbit f™(u) converges to
this fixed point for every u € (0,1) and this fixed point is the extinction
probability of the process. The value of f/(0) = E[Z] decides whether there
exists an attracting fixed point in the interval (0,1) or not. a

3.4 Lévy’s upward and downward theorems

Lemma 3.4.1. Given X € £}. Then the class of random variables
{Y =E[X|B] | BC A,Bis o —algebra }

is uniformly integrable.

Proof. Given e > 0. Choose § > 0 such that for all A € A, P[4] < &
implies E[|X|; A] < e. Choose further K € R such that K~ - E[|X|] < 4.
By Jensen’s inequality, Y = E[X|B] satisfies

Y1 =1EIX|B]| < E[|X||B] < E[|X]] .

Therefore
K -P(|X.|> K| <E[Y[|<E[|X]|<¢ K

so that P[|Y| > K] < 4. Now, by definition of conditional expectation ,
Y| < E[|X]|B] and {|Y| > K} € B

E[|Xgl; |Xgl > K] <E[IX];|Xg| > K] <e.

Definition. Denote by A the o-algebra generated by |J,, An.



3.4. Lévy’s upward and downward theorems 151

Theorem 3.4.2 (Lévy’s upward theorem). Given X € LY. Then X, =
E[X|Ay] is a uniformly integrable martingale and X, converges in L to
Xoo = E[X|Ax).

Proof. The process X is a martingale. The sequence X, is uniformly in-
tegrable by the above lemma. Therefore X, exists almost everywhere by
Doob’s convergence theorem for uniformly integrable martingales, and since
the family X, is uniformly integrable, the convergence is in L. We have
to show that X, =Y := E[X|Ax].
By proving the claim for the positive and negative part, we can assume
that X > 0 (and so Y > 0). Consider the two measures

Q1(A) = E[X; 4], Q2(4) = E[X0; 4] .

Since E[X|An] = E[X|A,], we know that Q; and Q2 agree on the -
system |J,, An. They agree therefore everywhere on As. Define the event
A= {E[Xleo] > Xoo } € Ax. Since QI(A) - QZ(A) = E[E[X|Aoo] -
Xw); Al = 0 we have E[X|Ax] < X almost everywhere. Similarly also
Xoo < X| Ao almost everywhere. O

As an application, we see a martingale proof of Kolmogorov’s 0 — 1 law:

Corollary 3.4.3. For any sequence A4, of independent o-algebras, the tail
g-algebra T = (), B, with By, =5, Am is trivial.

Proof. Given A € T, define X = 14 € L>(7) and the o-algebras C, =
o(A1,...,An). By Lévy’s upward theorem (3.4.2),

X = E[X|C] = lim E[X|C,].
But since C,, is independent of A,, and X is C,, measurable, we have
P[A] = E[X] =E[X|C,] —» X

and because X takes only the value 0 or 1 and X = P[A] shows that it
must be constant, we get P[A] =1 or P[4] = 0. a

Definition. A sequence A_,, of o-algebras A_, satisfying
- C A, C.A..(n_l) C---CA_
is called a downward filtration. Define A_o, =, A-n.

Theorem 3.4.4 (Lévy’s downward theorem). Given a downward filtration
A_, and X € £'. Define X_,, = E[X|A_,]. Then X_o = lim, 0o Xy,
converges in £' and X_o = E[X|A_).
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Proof. Apply Doob’s up-crossing lemma to the uniformly integrable mar-
tingale
X ky,— 1N S k S -1:

for all a'< b, the number of up-crossings is bounded
Ukla,b] < (|a] + || X))/ (b—a) .

This implies in the same way as in the proof of Doob’s convergence theorem
that lim,, . Y_, converges almost everywhere.

We show now that X_,, = E[X|A_]: given A € A_. We have E[X; A] =
E[X_,; A] = E[X_w; A]. The same argument as before shows that X_, =
E[X; A- ). O-

Lets also look at a martingale proof of the strong law of large numbers.

Corollary 3.4.5. Given X,, € £ which are IID and have mean m. Then
Sn/n— min L.

Proof. Define the downward filtration A_,, = 6(Sn, Sn+1,---)-

Since E[X1|A—,] = E[Xi|A_,] = E[Xi|Sn, Sn+1,...] = Xi, and E[X,|A4,] =
Sn/n. We can apply Lévy’s downward theorem to see that Sy, /n converges
in £!. Since the limit X is in 7, it is by Kolmogorov’s 0-1 law a constant
c and ¢ = E[X] = limy,—,00 E[Sn/n] = m. O

3.5 Doob’s decomposition of a stochastic process

Definition. A process X, is increasing, if P[X,, < Xp41] = 1.

Theorem 3.5.1 (Doob’s decomposition). Let X, be an A,-adapted L'-
process. Then
X=Xo+N+A

where N is a martingale null at 0 and A is a previsible process null at 0.
This decomposition is unique in L. X is a submartingale if and only if A
is increasing.

Proof. If X has a Doob decomposition X = Xo + N + A, then

E[Xn“Xn—1|-An—1] = E[Nn_Nn—llAn]+E[An_An——1|An—1] = An_An-l
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which means that
n .
An =D E[Xg ~ Xp-1An-1] .
k=1
If we define A like this, we get the required decomposition and the sub-

martingale characterization is also obvious. O

Remark. The corresponding result for continuous time processes is deeper
and called Doob-Meyer decomposition theorem. See theorem (4.17.2).

Lemma 3.5.2. Given s,t,u,v € Nwiths <t <u <wv If X, is a £2-
martingale, then
E[(X: - X )(Xy — Xu)] =0

and

EIXZ) = E[XZ] + 3 Bl(Xk - Xe)?].
k=1

Proof. Because E[X, — X,|A,] = X, — Xy = 0, we know that X, — X,
is orthogonal to £2(A,). The first claim follows since X; — X, € £2(Aq).
The formula

X, =Xo+ Z(Xk — Xk—l)
k=1

expresses X, as a sum of orthogonal terms and Pythagoras theorem gives
the second claim. O

Corollary 3.5.3. A L2-martingale X is bounded in £? if and only if
Srer Bl(Xk — Xi-1)?] < 0.

Proof.
E(X] = BIXE)+ " El(Xe~ Xer)?] < EIXZ)+ 3 E[(Xe—Xe1)?] < o0
k=1 k=1

If on the other hand, X, is bounded in £?, then ||X,|lz < K < oo and
Ek E[(Xk — Xk_1)2] <K+ E[Xg] O
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Theorem 3.5.4 (Doob’s convergence theorem for L?-martingales). Let X,
be a £?-martingale which is bounded in L2, then there exists X € £2 such
that X, — X in £2.

Proof. If X is bounded in £?, then, by monotonicity of the norm || X||; <
[|X |2, it is bounded in £* so that by Doob’s convergence theorem, X, — X
almost everywhere for some X. By Pythagoras and the previous corol-
lary (3.5.3), we have

E((X - X% < Y E[(Xi— Xie1)? =0
k>n+1

so that X, — X in £2. O

Definition. Let X,, be a martingale in £> which is null at 0. The conditional
Jensen’s inequality (3.1.4) shows that X2 is a submartingale. Doob’s de-
composition theorem allows to write X? = N + A, where N is a martingale
and A is a previsible increasing process. Define Ao, = lim, .o A, point
wise, where the limit can take the value oo also. One writes also (X) for 4
so that

X2=N+(X).

Lemma 3.5.5. Assume X is a £2-martingale. X is bounded in £? if and
only if E[(X)o] < 0.

Proof. From X? = N + A, we get E[X?2] = E[A,,] since for a martingale N,
the equality E[N,,] = E[No] holds and N is null at 0. Therefore, X is in £
if and only if E[A] < oo since = E[X?] = E[A4,] and A,, is increasing. [

We can now relate the convergence of X, to the finiteness of Ao = (X)oo.

Proposition 3.5.6. a) If lim,_,o, X,(w) converges, then Ay (w) < 0o.
b) On the other hand, if || X, — Xpn_1]|lec < K, then Ay (w) < oo implies
the convergence of lim, o, X, (w).
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Proof. a) Because A is previsible, we can define for every k a stopping time
S(k) = inf{n € N | Ap41 > k }. The stopped process AS() is previsible
because for B € Bg and n € N,

{Anas@) € B} = A1 U A2

with
n—1
A = |J{S(k)=i;4; € B} € Ans
i=0
Ay = {Ap,eB}In{Sk)<n—-1}°e A,_1.
Since

(XS(k))2 _ AS;c — (X2 _ A)S(k)

is a martingale, we see that (X5*) = AS(*) The later process A5%) is
bounded by k so that by the above lemma X5®) is bounded in £2. There-
fore limy, 00 Xpas(k) exists almost surely. Combining this with

{As < 00} = | J{Sk = o0}
k
proves the claim.
b) Suppose the claim is wrong and that
PlAsx = 00,sup | X,| < 00] > 0.

Then,

P[T(c) = 00; Ao = 00] > 0
where T'(c) is the stopping time

T{c)=inf{n||X,] >c}.
Now

E[XZ an — AT(c)an] =0
and XT() is bounded by ¢ + K. Thus

E[Ar(c)an] < (¢ + K)?

for all n. This is a contradiction to P[As = oo,sup, |Xn| < oc] >0. O

Theorem 3.5.7 (A strong law for martingales). Let X be a £2-martingale
zero at 0 and let A = (X). Then

X g

An

almost surely on {A,, = o0 }.
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Proof. (i) Césaro’s lemma: Given 0 = by < by < ...,by < bpy1 — o0 and a
sequence v, € R which converges v, — v, then bl EZ:l(bk — bg—1)vk —

Voo-

Proof. Let € > 0. Choose m such that vx > veo — € if K > m. Then

n

1 L&
11nn_1’1£f b Z(bk —br—1)vg > llerIlLIéf ™ Z(bk — bg—1)vk
k=1 k=1
+bn b_nbm (Voo — €)

> 0+veo —€

Since this is true for every € > 0, we have liminf > ve. By a similar
argument limsup > V. O

(ii) Kronecker’s lemma: Given 0 = by < b1 < cobe < bn_,;l — oo and a se-
quence T, of real numbers. Define s, = 21+ +2Zn. Then the convergence
of u, = Sy, Tk/bx implies that s, /b, — 0.

Proof. We have u, — un—1 = Zn/bn and

n

n
sn = b(uk — uk1) = bntn = D (bk = b-1)uk-1 -

k=1 k=1

Césaro’s lemma (i) implies that s, /b, converges to U — Uoo = 0. O

(iii) Proof of the claim: since A is increasing and null at 0, we have An >0
and 1/(1+Ay,) is bounded. Since A is previsible, also 1/(1+A4y) is previsible,
we can define the martingale

" Xy — Xk-
an(/(1+A)‘1dX)n:Z—kl+—A’;—l

k=1
Moreover, since (1 + A,) is An—;-measurable, we have
E[(Wn—Wn-1)}An_1] = (14+45) ?(An—An-1) < (14+An-1) 1= (14+4,) 7"

almost surely. This implies that (W)e < 1 so that limp oo W, exists
almost surely. Kronecker’s lemma (ii) applied point wise implies that on
{Ax = o0}
lim X,/(1+ Ap) = lim X,/A, —0.
n-—->00

n—oo
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3.6 Doob’s submartingale inequality

Theorem 3.6.1 (Doob’s submartingale inequality). Let X be a non-negative
submartingale. For any € > 0

€-P[ sup Xy > ¢ <E[Xn;{ sup Xi > e} <E[X,].
1<k<n 1<k<n

Proof. The set A = {sup,<;<, Xk > €} is a disjoint union of the sets

A() = {X()ZG}GAO

{XkZG}ﬂ(OAf)EAk.

=0

Ak

Since X is a submartingale, and Xy > € on Ay, we have for k < n
E[Xyn; Ax] > E[Xk; Ax] > €P[Ax] .
Summing up from k = 0 to n gives the result. |

We have seen the following result already as part of theorem (2.11.1). Here
it appears as a special case of the submartingale inequality:

Theorem 3.6.2 (Kolmogorov’s inequality). Given X, € £2? IID with
E[X;] =0and S, = }_7_, Xk. Then for € > 0,

Proof. S, is a martingale with respect to A4, = (X1, X2,...,X,). Because
u(z) = z? is convex, 52 is a submartingale. Now apply the submartingale
inequality (3.6.1). 0

Here is an other proof of the law of iterated logarithm for independent
N(0,1) random variables.

Theorem 3.6.3 (Special case of law of iterated logarithm). Given X,, IID
with standard normal distribution N(0,1). Then limsup,,_, ., Sp/A(n) = 1.
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Proof. We will use for

1-0) = [ oW di= [ n 2 en(-2/2) dy
the elementary estimates
(z+271)7'¢(2) <1-@(z) < z77¢(x) .

(i) Sn is a martingale relative to A, = o(X1,...,X,). The function z —
€%? is convex on R so that €S~ is a submartingale. The submartingale
inequality (3.6.1) gives

P[ sup Sk > €| =P[ sup € > %] < e %E[?5] = g0t /2
1<k<n 1<k<n

For given € > 0, we get the best estimate for § = ¢/n and obtain

Pl sup Sk >¢€ < e~/ (@n)
1<k<n

(ii) Given K > 1 (close to 1). Choose €, = KA(K™™!). The last inequality
in (i) gives .

P[ sup Sk > €] <exp(—€i/(2K™)) = (n—1)"¥(log k)%
1<k<Kn

The Borel-Cantelli lemma assures that for large enough n and K™ ! < k£ <
K‘n
Se < sup Sk <€ =KAK™?') < KA(k)
1<k<K?

which means for K > 1 almost surely

li <K.
P Kl <

By taking a sequence of K’s converging down to 1, we obtain almost surely

Sk
li <1.
ey AR) =

(iii) Given N > 1 (large) and § > 0 (small). Define the independent sets
Ap = {S(N™1) — S(N™) > (1= §)A(N™ — N™)}.

Then 2

PlAn] =1-(y) = (2m) 2y +y 7)) le v/
with y = (1-6)(2loglog(N"~! — N™))}/2, Since P[A,] is up to logarithmic
terms equal to (nlog N)~(1=9* we have Y . PlAn] = oo. Borel-Cantelli
shows that P{limsup,, A,] =1 so that

S(N™1) > (1 — §)A(N™! — N™) + S(N™) .
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By (ii), S(N") > —2A(N™) for large n so that for infinitely many n, we
have
S(N™1) > (1 - §)A(N™T — N™) —2A(N"™) .

It follows that

- Nn+1 1 B
limsupi’— > limsupigwg—; >(1-68)(1- N)l/z —2N"VZ,

3.7 Doob’s L? inequality

Lemma 3.7.1. (Corollary of Hélder inequality) Fix p > 1 and g satisfying
p~ 14+ ¢! =1. Given X,Y € LP satisfying

eP[IX| > ] <E[[Y[;]|X] 2 ¢]

Ve > 0, then || X, < g [|Y]p.

Proof. Integrating the assumption multiplied with peP~? gives
oo (e o]
L= / pePTIP[|X| > €] de < / peP2E[|Y];|1X| > €] de =: R.
0 0
By Fubini’s theorem, the the left hand side is

L= [ Bpe sl de =Bl gxiz0dd = BIXP].
0 0

Similarly, the right hand side is R = Elg - | X|P~!|Y|]. With Holder’s in-
equality, we get
E[IXP] < ElgIXPHY ] < allYlp - [1XP g -

Since (p — 1)g = p, we can substitute |||X|P~!||, = E[|X|P]'/ on the right
hand side, which gives the claim. O

Theorem 3.7.2 (Doob’s LP inequality). Given a non-negative submartingale
X which is bounded in £P. Then X* = sup,, X, is in £ and satisfies

[|1X*|] < g -sup || Xallp -
n
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Proof. Define X = SuP<x<n Xk for n € N. From Doob’s submartingale
inequality (3.6.1) and the above lemma (3.7.1), we see that

I Xzllp < gl Xnllp < gsup || Xall, .
n

Corollary 3.7.3. Given a non-negative submartingale X which is bounded
in LP. Then Xoo = limp, oo Xn exists in £, and || Xoo||, = sup, [ Xnllp -

Proof. The submartingale X is dominated by the element X* in the £P-
inequality. The supermartingale —X is bounded in £? and so bounded in
L'. We know therefore that Xoo = limy,_, o X, exists almost everywhere.
From | X, — Xo|? < (2X*)? € LP and the dominated convergence theorem
we deduce X,, — X in LP. |

Corollary 3.7.4. Given a martingale Y bounded in £? and X = |Y|. Then

Xoo = lim X,

n—oo

exists in £, and || Xoo||, = sup, [| Xnllp -

Proof. Use the above corollary for the submartingale X = [Y]. O

Theorem 3.7.5 (Kakutani’s theorem). Let X,, be a non-negative indepen-
dent £ process with E[X,,] = 1 for all n. Define Sy = 1 and S,, = T : Xk.
Then S, = lim, S, exists, because S, is a nonnegative £! martingale.
'Then S, is uniformly integrable if and only if [, E[XA’?] > 0.

Proof. Define a,, = E[X,ll/ 2]. The process

){11/2 ‘)(;/2 ‘)(711/2
T, = ...
ai ag an
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is a martingale. We have E[T2] = (a1a2---an)™2 < ([],, an) ™! < 0o so that
T is bounded in £2, By Doob’s £2-inequality

Efsup |S,|] < E[sup|Tn|2] < 4supE[|Tn|2] < 00

so that S is dominated by S* = sup, |S,| € £!. This implies that § is
uniformly integrable.

If S, is uniformly integrable, then S, — So in £'. We have to show that
[T52; @n > 0. Aiming to a contradiction, we assume that [] a, = 0. The
martingale T defined above is a nonnegative martingale which has a limit
T But since [],, an, = 0 we must then have that Soo = 0 and s0 S, — 0
in £'. This is not possible because E[S.] = 1 by the independence of the
Xn. d

Here are examples, where martingales occur in applications:

Example. This example is a primitive model for the Stock and Bond mar-
ket. Given a < 7 < b < oo real numbers. Define p = (r —a)/(b — a). Let ¢,
be IID random variables taking values 1, —1 with probability p respectively
1—p. Define a process B, (bonds with fixed interest rate f) and S, (stocks
with fluctuating interest rates) by

B, = (1 + T)an._l,Bo =1

Sn = (1 + Rn)Sn—laSO =1

with R, = (a +b)/2 + en(a — b)/2. Given a sequence A, (the portfolio),
your fortune is X,, and satisfies

Xn=04+7)Xpn-1+AnSn-1(Rn—7) .

We can write R, —r = (b — a)(Z, — Z,_1) with the martingale

n

Zn=) (—2p+1).

k=

—

The process Y, = (1 +r)™"X,, satisfies then

Yn — Yn—l = (1 + T)_nAnSn—l(R'n - T)
1
= §(b - a)(l + T)_nAnSn—l(Zn - Z'n—l)
= Cn(Zn - Zn—l)

showing us that Y is the stochastic integral [ C dZ. So, if your portfolio
Ay, is previsible (A,_; measurable), then Y is a martingale.

Example. Let X, X;,X,... be independent random variables satisfying
that the law of X is N(0,0?) and the law of X is N(0,02). We define the
random variables

Yi =X+ X
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which we consider as a noisy observation of the random variable X . Define
An =0(X1,...,X,) and the martingale

M, = E[X|A,] .

By Doob’s martmgale convergence theorem (3.5.4), we know that M,, con-
verges in £? to a random variable M. One can show that

E[(X — M,)?] = (072 +Zo

This implies that X = M if and only if } 0,2 = oco. If the noise grows
too much, for example for o, = n, then we can not recover X from the
observations Y;.

3.8 Random walks

Consider the d-dimensional lattice Z¢, where each point has 2d neighbors.
A particle starts at the origin 0 € Z¢ and makes in each time step a random
step into one of the 2d directions. What is the probability that the particle
returns back to the origin?

Definition. Define a sequence of IID random variables X,, which take values
in : ;
I={eeZ!|le|=Y lal=1)

i=1
and which have the uniform distribution defined by P[X,, = €] = (2d)~!
for all e € I. The random variable S, = ZLI X; with Sy = 0 describes
the position of the particle at time n. The discrete stochastic process S, is
called the random walk on the lattice Z2.

Figure. A random walk sample
path S1(w),..., Sp(w) in the lat-
tice Z* after 2000 steps. Bp(w)
is the number of revisits of the
starting points 0.

As a probability space, we can take Q = IN with product measure vV,

where v is the measure on E, which assigns to each point e the probability



3.8. Random walks 163

v({e}) = (2d)~". The random variables X, are then defined by Xp(w) =
wr,. Define the sets Ap, = {8, =0 } and the random variables

Y, =1la, -

if the particle has returned to position 0 € Z¢ at time n, then Y, = 1,
otherwise Y;, = 0. The sum B, = ZZ:O Y counts the number of visits of
the origin 0 of the particle up to time n and B = Y ;v Y counts the total
number of visits at the origin. The expectation

E[B] = i P[S, = 0]
n=0

tells us how many times a particle is expected to return to the origin. We
write E[B] = oo, if the sum diverges. In this case, the particle returns back
to the origin infinitely many times.

Theorem 3.8.1 (Polya). E[B] = oo for d = 1,2 and E[B] < oo for d > 2.

Proof. Fix n € N and define a™(k) = P[S, = k] for k € 7%, Because
the particle can reach in time n only a bounded region, the function a™
74 — R is zero outside a bounded set. We can therefore define its Fourier

transform '
Bs.(x) = 3 ol (k)eme
kezd

which is smooth function on T¢ = R%/Z4. It is the characteristic function
of S,, because
Ele®S"] = Y P[S, =kl .
kezd
The characteristic function ¢x of Xy is

d
1 2miT; __ 1
¢X(37) = 53 Z € = E Zcos(27rzi) .

lil=1 i=1

Because the S, is a sum of n independent random variables X;

d
bs, = Ox,(@)Px,(2) ... bx, () = di"(; cos(2mz;))" .
Note that ¢g, (0) = P[S, = 0].

We now show that E[B] = ¥, - ¢s,.(0) is finite if and only if d < 3. The
Fourier inversion formula gives

o] N 1
;P[Sn:()]=/rd7§¢x($)d$=/rdi_—¢md$



164 Chapter 3. Discrete Stochastic Processes
2
A Taylor expansion ¢x(z) =1 -3, Z(27)? + ... shows

1 2 2 2
3 B el <1 ox(y <2 &

The claim of the theorem follows because the integral

1
{zi<e} |2l

over the ball of radius ¢ in R is finite if and only if d > 3. O

|z]* .

Corollary 3.8.2. The particle returns to the origin infinitely often almost
surely if d < 2. For d > 3, almost surely, the particle returns only finitely
many times to zero and P[lim,_, |S,| = 00] = 1.

Proof. If d > 2, then Ay, = limsup,, A, is the subset of €2, for which the
particles returns to O infinitely many times. Since E[B] = Y ° P[A,],
the Borel-Cantelli lemma gives P[A] = 0 for d > 2. The particle returns
therefore back to 0 only finitely many times and in the same way it visits
each lattice point only finitely many times. This means that the particle
eventually leaves every bounded set and converges to infinity.

If d < 2, let p be the probability that the random walk returns to 0:

p= P[UAn] .

Then p™~! is the probability that there are at least m visits in 0 and the
probability is p™~! —p™ = p™~1(1 - p) that there are exactly m visits. We

can write .
E[B] =) mp™'(1-p)=7—.
m>1 p
Because E[B] = oo, we know that p = 1. O

The use of characteristic functions allows also to solve combinatorial prob-
lems like to count the number of closed paths starting at zero in the graph:

Proposition 3.8.3. There are

d

/Td(z cos(2mizy))™ dxy - - - dzg

k=1

closed paths of length n in the lattice Z2.
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Proof. 1f we know the probability P[S,, = 0] that a path returns to 0 in n
step, then (2d)"P[S, = 0] is the number of closed paths in Z? of length n.
But P[S, = 0] is the zeroth Fourier coefficient

d
/’n‘d ¢s, (z) dz = /ﬂ‘d din(z cos(2mizy))" dz

k=1
of ¢Sn . O

Example. In the case d = 1, we have

1
/ 22" cos?™ (27z) dx = ( 2n )
0 n

closed paths of length 2n starting at 0. We know that also because

P[Szn=0]=(2") 11

n )onon’

The lattice Z2 can be generalized to an arbitrary graph G which is a regular
graph that is a graph, where each vertex has the same number of neighbors.
A convenient way is to take as the graph the Cayley graph of a discrete
group G with generators ay, .. ., aq.

Corollary 3.8.4. If G is the Cayley graph of an Abelian group G then the
random walk on G is recurrent if and only at most two of the generators
have infinite order.

Proof. An Abelian group § is isomorphic to Z* x Zipy X ...Zp,. The char-
acteristic function of X, is a function on the dual group ¢

0 oo s n _ 1
;Jp[sn =0 =n§/g¢sn(x) dz =§é¢_x(w) dz _/g T—ox@ @

is finite if and only if G contains a three dimensional torus which means
k> 2. a

The recurrence properties on non-Abelian groups is more subtle, because
characteristic functions loose then some of their good properties.

Example. An other generalization is to add a drift by changing the prob-
ability distribution v on I. Given p; € (0, 1) with Z, ji=12; = 1. In this

case )
bx(@) = 3 pyetriss

I3]=1
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We have recurrence if and only if

1
/Td—_—l—¢x(f£) dxr = oo

Take for example the case d = 1 with drift parameterized by p € (0,1).
Then

¢x(z) = pe*™@ + (1 — p)e™ 2™ = cos(27mz) + i(2p — 1) sin(2nz) .

which shows that

1
/1rd1—¢x($)d$<oo

if p # 1/2. A random walk with drift will almost certainly not return to 0
infinitely often.

Example. An other generalization of the random walk is to take identically
distributed random variables X,, with values in I, which need not to be
independent. An example which appears in number theory in the case d = 1
is to take the probability space Q = T! = R/Z, an irrational number a and
a function f which takes each value in I on an interval [£;, 1), The
random variables X, (w) = f(w + na) define an ergodic discrete stochastic
process but the random variables are not independent. A random walk
Sp = Zzzl X} with random variables X} which are dependent is called a
dependent random walk.

Figure. If Yy are IID random
variables with uniform distri-
bution in [0,a], then Z, =
> k1 Ye mod 1 are dependent.
Define X, = (1,0) if Zx €
[071/4)’ Xk = ( 70) if Zy €
[1/411/2)) Xk = ( ,1) if Zx €
[1/2,3/4) and X = (0,-1) of
Zy € [3/4,1). Also Xy are no
more independent. For small a,
there can belong intervals, where
Xy is the same because Zj stays
in the same quarter interval. The
picture shows a typical path of
the process Sp = > p_; Xk.

Example. An example of a one-dimensional dependent random walk is the
problem of ”almeost alternating sums” [52]. Define on the probability space
Q = ([0,1}, A, dz) the random variables X,(x) = 21j,1/9)(z + na) — 1,
where « is an irrational number. This produces a symmetric random walk,
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but unlike for the usual random walk, where S, (z) grows like \/n, one sees
a much slower growth 5,,(0) < log(n)? for almost all a and for special
numbers like the golden ratio (/54 1)/2 or the silver ratio V2 + 1 one has
for infinitely many n the relation

a-log(n) +0.78 < 5,(0) < a-log(n) + 1

with a = 1/(2log(14v/2)). It is not known whether S,,(0) grows like log(n)
for almost all av.

Figure. An almost periodic ran-
dom walk in one dimensions. In-
stead of flipping coins to decide
whether to go up or down, one
turns a wheel by an angle « after
each step and goes up if the wheel
position is in the right half and
goes down if the wheel position is
in the left half. While for periodic
« the growth of S,, is either lin-
ear (like for a« =0), or zero (like
fora =1/2), the growth for most
irrational o seems to be logarith-
mic.

3.9 The arc-sin law for the 1D random walk

Definition. Let X,, denote the {—1, 1}-valued random variable with P[S,, =
+1] = 1/2 and let S,, = Y_j_, X be the random walk. We have seen that
it is a martingale with respect to X,,. Given a € Z, we define the stopping
time

T,=min{ne N| S, =a}.

Theorem 3.9.1 (Reflection principle). For integers a,b > 0, one has

Pla+ Sh=b,T-.<n]=P[S, =a+}].

Proof. The number of paths from a to b passing zero is equal to the number
of paths from —a to b which in turn is the number of paths from zero to
a+b. O
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Figure. The proof of the reflec-
tion principle: reflect the part of
the path above O at the line 0. To
every path which goes from a to
b and touches 0 there corresponds
a path from —a to b.

The reflection principle allows to compute the distribution of the random
variable T_,:

Theorem 3.9.2 (Ruin time). We have the following distribution of the stop-
ping time:

a) P[T_, < n] =P[S, < —a] + P[S, > al.

b) P[T_, =n] = P[5, = |

Proof. a) Use the reflection principle in the third equality:

P[T_a<n] = Y P[I_s<n,a+S,=9
beZ
= Y Pla+S,=b+) P[To<na+S.=1
b<0 b>0
= Y Pla+S,=8+) PlSa=a+b
b<0 b>0
= P[S, < —a]+P[S, > q
b) From
PlSn =a] = < a_?ﬂ )
2
we get
a 1
;P[Sn =aq] = i(P[Sn_l =a—1]-P[Sp_1=a+1]).
Also

P[S, >a, Sp-1 <4
+P[Sn > a, Sp—1 > a] —P[Sp_1 > q]

_ %(p[sn_1 = a] = P[Sn-1 = a+1])

P[S. > a] — P[Sn—1 > 4]
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and analogously
P[S, < —a] - P[Sp_y < —a] = %(P[sn_1 —a-1—P[Sp_1 =a]).
Therefore, using a)
P[T_,=n] = P[T_.<n]-P[T,<n-1]

P[S, < —a] - P[S,_1 < —a]
P[S, > a] —=P[S,_1 > d]

= S(PlShs =]~ P[Spy —a+1)
%(P[Sn_l =a—1]=P[Sa_; =a])

= %(P[Sn-l =a-1-PlS, 1 =a+1]) = %P[Sn = a]

Theorem 3.9.3 (Ballot theorem).

P[S,=a, Sl>0,...,Sn_1>0]=%-P[Sn=a].

Proof. When reversing time, the number of paths from 0 to a of length n
which do no more hit 0 is the number of paths of length n which start in
a and for which T_, = n. Now use the previous theorem

P[T_,=n]= %P[Sn =q].

Corollary 3.9.4. The distribution of the first return time is

P[Ty > 2n] = P[Sy, = 0] .

Proof.
P[Ty > 2n] = %P[:r_1 > om— 1]+ %P[Tl > on - 1]
= P[T_;>2n-1] ( by symmetry)
= P[SQn_l > —1land Sz, < 1]
= P[Szn_l € {0, 1}]
= P[S2n-1=1]=P[S3, =0].
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O

Remark. We see that lim, o, P[Top > 2n] = 0. This restates that the
random walk is recurrent. However, the expected return time is very long:

E[To] = ) nP[To=n]= iP[To >n| = iP[Sn =0]=o00
n=0 n=0 n=0

because by the Stirling formula n! ~ n"e~"\/2mn, one has ( 2: ) N
227 /\/mn and so

2 1
P[San = 0] = ( ;‘ ) ke (7n)"V/2 |

Definition. We are interested now in the random variable
L(w) = max{0 < n < 2N | Sp(w) = 0}

which describes the last visit of the random walk in 0 before time 2N. If
the random walk describes a game between two players, who play over a
time 2N, then L is the time when one of the two players does no more give
up his leadership.

Theorem 3.9.5 (Arc Sin law). L has the discrete arc-sin distribution:

1 2n 2N —2n
== () (V20
and for N — oo, we have

L 2
P[m <z]— p arcsin(v/2) .

Proof.
P[L = 271] = P[Szn = 0] . P[To > 2N — 2"1,] = P[Szn = 0] . P[SQN_Qn = 0]

which gives the first formula. The Stirling formula gives P[Szx = 0] ~ —\/%
so that ) ) 1k
L2 = T = )

with
1

fle) = m/z(l—z)
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It follows that

P[Q%V_ <z]— /Oz flz) dz = %arcsin(\/g) .

1.2

0.8

-0.2 to0.2 0.4 0.6 0.8 1

Figure. The distribution function
P[L/2N < z] converges in the
limit N — oo to the function

2arcsin(/z) /.

-0.2 0.2 0.4 0.6 0.8 1

Figure. The density function of
this distribution in the limit N —
oo s called the arc-sin distribu-
tion.

Remark. From the shape of the arc-sin distribution, one has to expect that
the winner takes the final leading position either early or late.

Remark. The arc-sin distribution is a natural distribution on the interval
[0,1] from the different points of view. It belongs to a measure which is
the Gibbs measure of the quadratic map z — 4 - z(1 — z) on the unit
interval maximizing the Boltzmann-Gibbs entropy. It is a thermodynamic
equilibrium measure for this quadratic map. It is the measure u on the
interval {0, 1] which minimizes the energy

1 1
1) == [ [ 10gIE - Bl au(E) du(E)

One calls such measures also potential theoretical equilibrium measures.

3.10 The random walk on the free group

Definition. The free group Fy with d generators is the set of finite words

w written in the 2d letters

-1 -1 -1
A={a1,ay,...,a40,a7 ,a5°,...,a7" }
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modulo the identifications a;a; 1= a; lq; = 1. The group operation is

concatenating words v o w = vw. The inverse of w = wywq - - wy, is W™ =
w; - wy 'w!. Elements w in the group Fy can be uniquely represented
by reduced words obtained by deleting all words vv~! in w. The identity
e in the group Fy is the empty word. We denote by [(w) the length of the
reduced word of w.

Definition. Given a free group G with generators A and let X}, be uniformly
distributed random variables with values in A. The stochastic process S, =
X, -+ X, is called the random walk on the group G. Note that the group
operation Xj needs not to be commutative. The random walk on the free
group can be interpreted as a walk on a tree, because the Cayley graph of
the group Fy with generators A contains no non-contractible closed circles.

++
Figure. Part of the Cayley graph l$ {I
of the free group Fy with two gen- + +
erators a,b. It is a tree. At ev- 1’+.+ +++
ery point, one can go into 4 dif- $ T +:
ferent directions. Going into one ++ ++
of these directions corresponds to + +
multiplying with a,a™,b or b~ 1. I $

o

Definition. Define for n € N
rm=P[S,=e, S1#¢,S2#e€,...8,1 # €

which is the probability of returning for the first time to e if one starts at
e. Define also for n € N

mp = P[S, =¢] v
with the convention m(® = 1. Let  and m be the probability generating
functions of the sequences r, and my:

oo} o
m(z) = Z mpx", r(z) = Zrnsc" .
n=0 n=0

These sums converge for |z| < 1.

Lemma 3.10.1. (Feller)
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Proof. Let T be the stopping time
T=min{neN|S, =¢€}.

With P[T = n] = r,, the function r(z) = Y., r,z" is the probability
generating function of T'. The probability generating function of a sum in-
dependent random variables is the product of the probability generating
functions. Therefore, if T; are independent random variables with distribu-
tion T, then Y7 | T; has the probability generating function z — r(z).
We have

imnz" = iP[S =elz"
n=0 n=0

= Z Z P[Sn1=easn2:e7""s7lk=e7

n=0 0<n; <na <+ <N

Sn#eforng {ny,... ng }z"

n=0 k=1 k=0

Remark. This lemma is true for the random walk on a Cayley graph of any
finitely presented group.

The numbers 74, ; are zero for odd 2n+ 1 because an even number of steps
are needed to come back. The values of 7, can be computed by using basic
combinatorics:

Lemma 3.10.2. (Kesten)

1 1/ 2n—
rom = —— 1 ( 2:_ 12 ) 2d(2d — 1)1

Proof. We have

1
Top = ~—|{w1w2 Wy € G, wk = wiws cowg F e}

To count the number of such words, map every word with 2n letters into
a path in Z? going from (0,0) to (n,n) which is away from the diagonal
except at the beginning or the end. The map is constructed in the following
way: for every letter, we record a horizontal or vertical step of length 1.
If l(w ) =1 ( ~1) + 1, we record a horizontal step. In the other case, if
H{w*) = I(w*1) — 1, we record a vertical step. The first step is horizontal
independent of the word There are

l 2n —2
n n—1
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such paths since by the distribution of the stopping time in the one dimen-
sional random walk

1
2n—1 PlSzn-1 =1]

_ 1 2n-1

T 2n-—1 n

1/ 2n-2

- n n—1 )
Counting the number of words mapped into the same path, we see that we
have in the first step 2d possibilities and later (2d — 1) possibilities in each

of the n — 1 horizontal step and only 1 possibility in a vertical step. We
have therefore to multiply the number of paths by 2d(2d — 1)»~1. O

P[T_l =2n— 1]

Theorem 3.10.3 (Kesten). For the free group Fy, we have

2d -1
m(z) = .
(d—1)+/d? — (2d — 1)22

Proof. Since we know 2" we can compute

") = d—/d? - (2d — 1)z2

2d-1

and get the claim with Feller’s lemma m(z) = 1/(1 — r(z)). O

Remark. The Cayley graph of the free group is also called the Bethe lattice.
One can read of from this formula that the spectrum of the free Laplacian
L : I*(F4) — [?(Fy) on the Bethe lattice given by

Lu(g) = Y u(g+a)

acA

is the whole interval [—a, a] with a = 2v/2d — 1.

Corollary 3.10.4. The random walk on the free group Fy with d generators
is recurrent if and only if d = 1.

Proof. Denote as in the case of the random walk on Z® with B the random
variable counting the total number of visits of the origin. We have then
again E[B] = )" P[S, =¢€] =3, m, = m(1). We see that for d = 1 we
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have m(1) = oo and that m(d) < oo for d > 1. This establishes the analog
of Polya’s result on Z¢ and leads in the same way to the recurrence:

(i) d = 1: We know that Z; = Fy, and that the walk in Z! is recurrent.
(ii) d > 2: define the event A, = {Sn = €}. Then Ay = limsup,, A, is the
subset of €, for which the walk returns to e infinitely many times. Since
for d > 2,

(oo}
E[B] =) " Pl4n)m(d) < o0,
n=0
The Borel-Cantelli lemma gives P[Ao] = 0 for d > 2. The particle returns
therefore to 0 only finitely many times and similarly it visits each vertex in
Fy only finitely many times. This means that the particle eventually leaves
every bounded set and escapes to infinity. g

Remark. We could say that the problem of the random walk on a discrete
group G is solvable if one can give an algebraic formula for the function
m(z). We have seen that the classes of Abelian finitely generated and free
groups are solvable. Trying to extend the class of solvable random walks
seems to be an interesting problem. It would also be interesting to know,
whether there exists a group such that the function m(z) is transcendental.

3.11 The free Laplacian on a discrete group

Definition. Let G be a countable discrete group and A C G a finite set
which generates G. The Cayley graph I" of (G, A) is the graph with edges
G and sites (4, j) satisfyingi —j € Aor j—i € A.

Remark. We write the composition in G additively even so we do not
assume that G is Abelian. We allow A to contain also the identity e € G.
In this case, the Cayley graph contains two closed loops of length 1 at each
site.

Definition. The symmetric random walk on I'(G, A) is the process obtained
by summing up independent uniformly distributed (AU A7Y)-valued ran-
dom variables X,,. More generally, we can allow the random variables Xn
to be independent but have any distribution on AU A~!. This distribution
is given by numbers p, = p;! € [0, 1] satisfying > acAua-1Pa =1.

Definition. The free Laplacian for the random walk given by (G, A,p) is
the linear operator on {2(G) defined by

Lgh = Pg—h -

Since we assumed p, = p,-1, the matrix L is symmetric: Lgp = Lpg and
the spectrum

o(L)={E € C| (L - E) is invertible }

is a compact subset of the real line.
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Remark. One can interpret L as the transition probability matrix of the
random walk which is a ”Markov chain”. We will come back to this inter-
pretation later.

Example. G =7, A= {1}.p=p, = 1/2for a = 1,-1 and p, = 0 for
a ¢ {1,—1}. The matrix

]
N o
B o
B o
b o
o3

is also called a Jacobi matrix. It acts on the Hilbert space [*(Z) by (Lu), =
P(Unt1 + Un—1)-

Example. Let G = D3 be the dihedral group which has the presentation
G = (a,bla® = b* = (ab)? = 1). The group is the symmetry group of the
equilateral triangle. It has 6 elements and it is the smallest non-Abelian
group. Let us number the group elements with integers {1,2 = a,3 =
a2,4 = b,5 = ab,6 = a%b }. We have for example 3 x4 = a®b = 6 or
3%5 = a2ab = a3b = b = 4. In this case A = {a,b},A~! = {a™',b} so that
AU A™! = {a,a7},b}. The Cayley graph of the group is a graph with 6
vertices. We could take the uniform distribution p, = py = p,-1 = 1/3 on
AUA™Y, but lets instead chose the distribution p, = pa-1 =1 /4, p =1/2,
which is natural if we consider multiplication by b and multiplication by
b~! as different.

Example. The free Laplacian on D3 with the random walk transition prob-
abilities p, = pa-1 = 1/4,pp = 1/2 is the matrix

0 1/4 1/4 1/2 0 0
1/4 0 1/4 0 1/2 0
1/4 0 0 0 0 1/2
1/2 0 0 0 1/4 1/4
0 1/2 0 1/4 0 1/4
0O 0 1/2 1/4 0 O

which has the eigenvalues (—3 + v/5)/8, (5 + v/5)/8,1/4, —3/4.
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Figure. The Cayley graph of the
dihedral group G = D3 is a reg-
ular graph with 6 vertices and 9
edges.

A basic question is: what is the relation between the spectrum of L, the
structure of the group G and the properties of the random walk on G..

Definition. As before, let m, be the probability that the random walk.
starting in e returns in n steps to e and let

m(z) = Z mapx"

be the generating function of the sequence my,.

Proposition 3.11.1. The norm of L is equal to limsupn_,oo(mn)l/ ™ the
inverse of the radius of convergence of m(z).

Proof. Because L is symmetric and real, it is self-adjoint and the spectrum
of L is a subset of the real line R and the spectral radius of L is equal to
its norm ||L||.

We have [L"]ee = my since [L"]e is the sum of products []}_, pa, each
of which is the probability that a specific path of length n starting and
landing at e occurs.

It remains therefore to verify that

limsup ||L™||*/™ = limsup[L™]L/®
n-—000 n—o0
and since the > direction is trivial we have only to show that < direction.
Denote by E()\) the spectral projection matrix of L, so that dE(A) is a
projection-valued measure on the spectrum and the spectral theorem says
that L can be written as L = [ X dE()). The measure p = dF,. is called
a spectral measure of L. The real number E()\) — E(u) is nonzero if and
only if there exists some spectrum of L in the interval [A, #). Since

% > [L;]l“ = /R(E — X! dk(E)

n
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can’t be analytic in A in a point A¢ of the support of dk which is the
spectrum of L, the claim follows. O

Remark. We have seen that the matrix L defines a spectral measure p. on
the real line. It can be defined for any group element g, not only g = e and
is the same measure. It is therefore also the so called density of states of L.
If we think of y as playing the role of the law for random variables, then
the integrated density of states E(\) = F1(\) = [ du()) plays the role
of the distribution function for real-valued random variables.

Example. The Fourier transform U : [3(Z') — L%(T):

i(z) = (Uu)(z) = Y_ une™

neL

diaéonalises the matrix L for the random walk on Z!

(ULU™)i(z) = ((UL)(un)(@) = pU(Unt1 + un-1)(z)
. Z(un+1 + un—l)einz
neEZ
= p Z un(ei(n—l)m + ei(n+1)z)
neZ
— pzun(eiz +e—iz)einx
n€ezZ
= p Z un2 cos(z)e'™®
neZ

= 2pcos(z) - @(z) .

This shows that the spectrum of ULU* is [—1,1] and because U is an
unitary transformation, also the spectrum of L is in [-1,1].

Example. Let G = Z% and A = {e;}%,, where {e;} is the standard bases.
Assume p = p, = 1/(2d). The analogous Fourier transform F : [2(Z%) —
L?(T¢) shows that FLF* is the multiplication with %12?=1 cos(z;). The
spectrum is again the interval [-1,1]. ,

Example. The Fourier diagonalisation works for any discrete Abelian group
with finitely many generators.

Example. G = F; the free group with the natural d generators. The spec-
trum of L is
V2d—-1 v2d-1
[_ ’ ]
d d
which is strictly contained in [-1,1] if d > 1.

Remark. Kesten has shown that the spectral radius of L is equal to 1 if and
only if the group G has an invariant mean. For example, for a finite graph,
where L is a stochastic matrix, for which each column is a probability
vector, the spectral radius is 1 because LT has the eigenvector (1,...,1)
with eigenvalue 1.
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Random walks and Laplacian can be defined on any graph. The spectrum
of the Laplacian on a finite graph is an invariant of the graph but there are
non-isomorphic graphs with the same spectrum. There are known infinite
self-similar graphs, for which the Laplacian has pure point spectrum [63].
There are also known infinite graphs, such that the Laplacian has purely
singular continuous spectrum [95]. For more on spectral theory on graphs,
start with [6].

3.12 A discrete Feynman-Kac formula

Definition. A discrete Schrodinger operator is a bounded linear operator
L on the Hilbert space [2(Z%) of the form

d
(Lu)(n) = Zu,(n +e;) — 2u(n) + u(n — e;) + V(n)u(n),

i=1

where V is a bounded function on Z¢. They are discrete versions of op-
erators L = —A + V(z) on L%(R?), where A is the free Laplacian. Such
operators are also called Jacobi matrices.

Definition. The Schrédinger equation
iht = Lu, u(0) = uo

is a differential equation in [2(Z%, C) which describes the motion of a com-
plex valued wave function u of a classical quantum mechanical system. The
constant £ is called the Planck constant and i = /=1 is the imaginary
unit. Lets assume to have units where i = 1 for simplicity.

Remark. The solution of the Schrédinger equation is
Uy = B%L’U/O .

The solution exists for all times because the von Neumann series

202 L3
tL _ S -
e =1+tL+ 5 + 3l +
is in the space of bounded operators.

Remark. It is an achievement of the physicist Richard Feynman to see
that the evolution as a path integral. In the case of differential operators
L, where this idea can be made rigorous by going to imaginary time and
one can write for L=—-A+V

e tu(z) = Egledo VO dsy0(4(1))]

where E, is the expectation value with respect to the measure P, on the
Wiener space of Brownian motion starting at z.
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Here is a discrete version of the Feynman-Kac formula:
Definition. The Schrodinger equation with discrete time is defined as
i(ut+€ - ut) = ELut y
where € > 0 is fixed. We get the evolution
Utgne = (1 — L) uy
and we denote the right hand side with L™u,.
Definition. Denote by T', (i, ) the set of paths of length n in the graph
G having as edges Z? and sites pairs [4, j] with |i — j| < 1. The graph G
is the Cayley graph of the group Z? with the generators A U A~! U {e},

where A = {ey,...,eq, } is the set of natural generators and where e is the
identity.

Definition. Given a path v of finite length n, we use the notation

exp(/ L)= HL'y(i),'y(H-l) .
ki i=1

Let Q is the set of all paths on G and E denotes the expectation with
respect to a measure P of the random walk on G starting at 0.

Theorem 3.12.1 (Discrete Feynman-Kac formula). Given a discrete
Schrodinger operator L. Then

(7)(0) = Eolexa( | " L) ulvn))] -

Proof.

(L™u)(0)

Z(Ln)Oju(])
Y e / ) u()

J Y€ETA(0,5)

= P > exp( / u(y(n))

I

O

Remark. This discrete random walk expansion corresponds to the Feynman-
Kac formula in the continuum. If we extend the potential to all the sites of
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the Cayley graph by putting V ([k,k]) = V (k) and V([k,1]) = 0 for k # 1,
we can define exp(fv V) as the product [T7—; V([7(¢),7(i + 1)]). Then

(170)(0) = Elexo( | V)uly(m)]
which is formally the Feynman-Kac formula.

In order to compute (L™u)(k) with L = (1 — keL), we have to take the
potential ¥ defined by

o([k, k]) = 1 — dev((k)) -

Remark. The Schrodinger equation with discrete time has the disadvantage
that the time evolution of the quantum mechanical system is no more
unitary. This draw-back could be overcome by considering also ih(u; —
us—c) = eLu; so that the propagator from u;—e 10 Ut4e is given by the
unitary operator ' '
i€ i€ 1

U=(1 EL)(I + hL)
which is a Cayley transform of L. See also [50], where the idea is disussed
to use L = arccos(aL), where L has been rescaled such that aL has norm
smaller or equal to 1. The time evolution can then be computed by iterating
the map A : (¥, ¢) — (2aLy) — ¢,9)) on H® H.

3.13 Discrete Dirichlet problem

Also for other partial differential equations, solutions can be described prob-
abilistically. We look here at the Dirichlet problem in a bounded discrete
region. The formula which we derive in this situation holds also in the
continuum limit, where the random walk is replaced by Brownian motion.

Definition. The discrete Laplacian on Z? is defined as
Af(na m) = f(n+1am)+f(n_l’m)+f(n7m+1)+f(n,m—l)_4f(nam) .

With the discrete partial derivatives
8 (n,m) = L(F(nt1,m)=F(m,m)), 8 f(n,m) = 5(f(n,m) = (n=1,m)

65 £ m) = (F(m, 1) nm)), 8 F(n,m) = 5((n,m)—F(n,m=1)

the Laplacian is the sum of the second derivatives as in the continuous case,
where A = foz + fyy:

A=6to, +610, .
The discrete Laplacian in Z? is defined in the same way as a discretisation
of A = frz + fyy + fz2- The setup is analogue in higher dimensions

d

(Au)(n) = 51(} Z(u(n + &) +u(n — e;) — 2u(n)) ,

i=1

b
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where ey, ...,eq is the standard basis in Z¢.

Definition. A bounded region D in Z¢ is a finite subset of Z%. Two points
are connected in D if they are connected in Z3. The boundary §D of D
consists of all lattice points in D which have a neighboring lattice point
which is outside D. Given a function f on the boundary 4D, the discrete
Dirichlet problem asks for a function v on D which satisfies the discrete
Laplace equation Au = 0 in the interior int(D) and for which u = f on the
boundary dD.

Figure. The discrete Dirichlet

problem is a problem in lin- o L
ear algebra. One algorithm to ® o o 00
solve the problem can be restated S S S PO
as a probabilistic "path integral : ' :
method”. To find the value of u
at a point x, look at the ”dis-
crete Wiener space” of all paths
~ starting at x and ending at ° ¢
some boundary point Sr(w) €
8D of D. The solution is u(z) =
Eg[f(S7)]-

Definition. Let 2, , denote the set of all paths of length n in D which start
at a point £ € D and end up at a point in the boundary §D. It is a subset
of I'y n, the set of all paths of length n in 7% starting at x. Lets call it the
discrete Wiener space of order n defined by z and D. It is a subset of the
set I'y » which has 247 glements. We take the uniform distribution on this
finite set so that P, ,[{v}] = 1/29".

Definition. Let L be the matrix for which L, = 1/(2d) if z,y € Z¢ are
connected by a path and z is in the interior of D. The matrix L is a bounded
linear operator on [2(D) and satisfies L, , = L, ; for z, z € int(D) = D\éD.
Given f: 6D — R, we extend f to a function F(z) =0on [ D =D\ éD
and F(z) = f(z) for z € §D. The discrete Dirichlet problem can be restated
as the problem to find the solution u to the system of linear equations

1-Lyu=f.

Lemma 3.13.1. The number of paths in Q, , starting at z € D and ending
at a different point y € D is equal to (2d)"L7,.




3.13. Discrete Dirichlet problem 183

Proof. Use induction. By definition, L;, is 1/(2d) if there is a path from z
to z. The integer L7 , is the number of paths of length n from x to y. O

Figure. Here is an example of a
problem where D C Z? has 10

points:
[0 0 00000 OO0 O] o o
0 00OO0O0OOOOO OO
000 O0OO0OO0OOOT OO R R S
1010100100
4L___010101()010 O T )
000 0OO0OO0OOOODO j
0 000O0OOUOOO OO Py
0001010011 ~
0 000 O0OOUOOU 0D
|00 000O0O0O0 O O]

Only the rows corresponding to
interior points are nonzero.

Definition. For a function f on the boundary §D, define
Eonlfl= ) fW)LE,
y€SD

and
E;[f] =) E.alf].
n=0

This functional defines for every point £ € D a probability measure Jg ON
the boundary 4D. It is the discrete analog of the harmonic measure in the
continuum. The measure P, on the set of paths satisfies E,[1] = 1 as we
will just see.

Proposition 3.13.2. Let S, be the random walk on Z¢ and let T be the
stopping time which is the first exit time of S from D. The solution to the
discrete Dirichlet problem is

u(z) = Ex[f(Sr)]

Proof. Because (1 — L)u = f and
Eenlfl = (L"f)z ,



184 Chapter 3. Discrete Stochastic Processes
we have from the geometric series formula

n

(1-A)t =) 4

k=0

the result
u@)=(1-L)7f(@) =) [L"fle =Y Eonlf] = E[S7)] .
n=0 n=0

Define the matrix K by K,; = 1 for j € 6D and K;; = Lj;/4 else. The
matrix K is a stochastic matrix: its column vectors are probability vectors.
The matrix K has a maximal eigenvalue 1 and so norm 1 (K7 has the
maximal eigenvector (1,1,...,1) with eigenvalue 1 and since eigenvalues of
K agree with eigenvalues of KT). Because ||L|| < 1, the spectral radius of
L is smaller than 1 and the series converges. If f = 1 on the boundary,
then u = 1 everywhere. From E,[1] = 1 follows that the discrete Wiener
measure is a probability measure on the set of all paths starting at . 0O

. > ® . o
. [ ] @ . ® : e . . o e o
[ . . * - @ o . . ® - e
LA 3 * + e . . o .

Figure. The random  Figure. The diffusion Figure. The diffusion
walk defines a diffu-  process after time t =  process after time t =
sion process. 2. 3.

The path integral result can be generalized and the increased generality
makes it even simpler to describe:

Definition. Let (D, E) be an arbitrary finite directed graph, where D is
a finite set of n vertices and E C D x D is the set of edges. Denote an
edge connecting ¢ with j with e;;. Let K be a stochastic matrix on [2(D):
the entries satisfy K;; > 0 and its column vectors are probability vectors
Y icp Kij =1 for all j € D. The stochastic matrix encodes the graph and
additionally defines a random walk on D if K;; is interpreted as the tran-
sition probability to hop from j to ¢. Lets call a point j € §D a boundary
point, if K;; = 1. The complement intD = D\§D consists of interior points.
Define the matrix L as Lj; = 0 if j is a boundary point and L;; = Kj;
otherwise.
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The discrete Wiener space €2, C D on D is the set of all finite paths v =
(x = xo, 21,2, ...,T,) starting at a point z € D for which K;,4,., > 0.
The discrete Wiener measure on this countable set is defined as P;[{v}] =
H;.:Ol K jt+1. A function u on D is called harmonic if (Lu), = 0 for all
z € D. The discrete Dirichlet problem on the graph is to find a function u
on D which is harmonic and which satisfies 4 = f on the boundary 6D of
D.

Theorem 3.13.3 (The Dirichlet problem on graphs). Assume D is a directed
graph. If S, is the random walk starting at z and T is the stopping time
to reach the boundary of D, then the solution «

u = Eg[f(S7)]

is the expected value of St on the discrete Wiener space of all paths starting
at z and ending at the boundary of D.

Proof. Let F be the function on D which agrees with f on the boundary of
D and which is 0 in the interior of D. The Dirichlet problem on the graph
is the system of linear equations (1 — L)u = f. Because the matrix L has
spectral radius smaller than 1, the problem is given by the geometric series

u=Y L"f.
n=0
But this is the sum E.[f(S7)] over all paths v starting at = and ending at
the boundary of f. a

Example. Lets look at a directed graph (D, E) with 5 vertices and 2 bound-
ary points. The Laplacian on D is defined by the stochastic matrix

0 1/3 0 0 0

1/2 0 1 0 0

K=|1/4 1/2 0 0 0

1/8 1/6 0 1 0

1/8 0 0 0 1

or the Laplacian

0 1/2 1/4 1/8 1/8

/3 0 1/2 1/6 0©

L= 0 1 0 0 0
0 0 0 1 0

0 0 0 0 1

Given a function f on the boundary of D, the solution u of the discrete
Dirichlet problem (1 — L)u = f on this graph can be written as a path
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integral 37 ) L™ f = E,[f(S7)] for the random walk S, on D stopped at
the boundary 6D.

Figure. The directed graph
(D,E) with 5 vertices and 2
boundary points.

Remark. The interplay of random walks on graphs and discrete partial
differential equations is relevant in electric networks. For mathematical
treatments, see [19, 99].

3.14 Markov processes

Definition. Given a measurable space (S, B) called state space, where § is
a set and B is a o-algebra on S. A function P : § x B — R is called a
transition probability function if P(z,-) is a probability measure on (S, B)
for all z € S and if for every B € B, the map s — P(s, B) is B-measurable.
Define P'(z,B) = P(z,B) and inductively the measures P"*!(z, B) =
Js P™(y, B)P(z,dy), where we write J P(z,dy) for the integration on §
with respect to the measure P(z,-).

Example. If S is a finite set and B is the set of all subsets of S. Given
a stochastic matrix K and a point s € S, the measures P(s,-) are the
probability vectors, which are the columns of K.

Remark. The transition probability functions are elements in L(S, M1(9)),
where M) (S) is the set of Borel probability measures on S. With the mul-
tiplication

(PoQ)(z,B) = /S P(y, B) dQ(x)

we get a commutative semi-group. The relation P"t™ = P" o P™ is also
called the Chapmann-Kelmogorov equation.

Definition. Given a probability space (,.4,P) with a filtration A, of o-
algebras. An Ap-adapted process X,, with values in S is called a discrete
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time Markov process if there exists a transition probability function P such
that
P[X, € B | As](w) = P" ¥ (Xx(w), B) .

Definition. If the state space S is a discrete space, a finite or countable
set, then the Markov process is called a Markov chain, A Markov chain is
called a denumerable Markov chain, if the state space S is countable, a
finite Markov chain, if the state space is finite.

Remark. It follows from the definition of a Markov process that X, satisfies
the elementary Markov property: for n > k,

P(X, € B|X1,...,Xs] =P[X, € B| Xa].

This means that the probability distribution of X, is determined by know-
ing the probability distribution of X,,_;. The future depends only on the
present and not on the past.

Theorem 3.14.1 (Markov processes exist). For any state space (S,B) and
any transition probability function P, there exists a corresponding Markov
process X.

Proof. Choose a probability measure p on (S, B) and define on the prod-
uct space (©2,.4) = (SN, BY) the m-system C consisting of of cylinder-sets
HneN B, given by a sequence B, € B such that B,, = S except for finitely
many n. Define a measure P = P, on (2,C) by requiring

P[wkEBk,kzl,...n]=/

/L(dx())/ P(zg,dzq) . .. P(zp-1,dz,) .
By B

Bn

This measure has a unique extension to the o-algebra A.

Define the increasing sequence of o-algebras A, = B" x [[,{0,Q} con-
taining cylinder sets. The random variables X,,(w) = z, are A"-adapted.
In order to see that it is a Markov process, we have to check that

P[Xn € B, | An_l](w) = P(Xn_l(w),Bn)

which is a special case of the above requirement by taking Bx = S for
k#n. 0

Example. Independent S-valued random variables
Assume the measures P(z,-) are independent of z. Call this measure P. In
this case

P[X, € By | An_1](w) = P[B]
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which means that P[X, € B, | A,_1] = P[X, € B,]. The S— valued
random variables X, are independent and have identical distribution and
P is the law of X,,. Every sequence of IID random variables is a Markov
process.

Example. Countable and finite state Markov chains.
Given a Markov process with finite or countable state space S. We define
the transition matrix P;; on the Hilbert space [2(S) by

Bj = PG, {5}) .

The matrix P transports the law of X,, into the law of X, 1.

The transition matrix P;; is a stochastic matrix: each column is a proba-
bility vector: Zj F;; =1 with P;; > 0. Every measure on S can be given
by a vector 7 € I2(S) and Pr is again a measure. If X, is constant and
equal to ¢ and X, is a Markov process with transition probability P, then
P =P[Xn =j].

Example. Sum of independent S-valued random variables Let S be a count-
able Abelian group and let 7 be a probability distribution on S assigning
to each j € S the weight ;. Define P;; = m;_;. Now X,, is the sum of n
independent random variables with law #. The sum changes from i to j
with probability Ijij = Pi—j-

Example. Branching processes Given S = {0,1,2... } = N with fixed
probability distribution #. If X is a S-valued random variable with distri-
bution 7 then EZ 1 X has a distribution which we denote by ("), Define
the matrix P;; = 7, () The Markov chain with this transition probability
matrix on § is called a branching process.

Definition. The transition probability function P acts also on measures 7
of S by

P(m)(B) = / P(z, B) dn(z) .
S
A probability measure 7 is called invariant if Pr = 7. An invariant measure
w on S is called stationary measure of the Markov process.

This operator on measures leaves a subclass of measures with densities with
respect to some measure v invariant. We can so assign a Markov operator
to a transition probability function:

Lemma 3.14.2. For any z € S define the measure

= i 2%7»’"(1‘, B)
n=0

on (S, B) has the property that if u is absolutely continuous with respect
to v, then also Ppu is absolutely continuous with respect to v.
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Proof. Given p = f - v with f € L(S). Then

Py = /S P(z, B)f(z) dv(z)

is absolutely continuous with respect to v because Pu(B) = 0 implies
P(z, B) = 0 for almost all z with f(x) > 0 and so fv(B) =0. O

Corollary 3.14.3. To each transition probability function can be assigned a
Markov operator P : L}(S,v) — LY(S,v).

Proof. Choose v as above and define

Pf=f

if Py = pe with u; = fiv;. To check that P is a Markov operator, we have
to check Pf > 0 if f > 0, which follows from

Pfu(B) = /S P(z, B)f(z) dv(z) > 0.

We also have to show that |[Pf||1 = 1 if ||f||1. It is enough to show this
for elementary functions f = ). a;1p; with a; > 0 with B; € B satisfying
>-;a;v(B;) = 1 satisfies ||P1pv|| = v(B). But this is obvious ||P1pv|| =
[5 P(z,") dv(z) = v(B). m]

We see that the abstract approach to study Markov operators on L1(S) is
more general, than looking at transition probability measures. This point
of view can reduce some of the complexity, when dealing with discrete time
Markov processes.
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Chapter 4

Continuous Stochastic
Processes

4.1 Brownian motion

Definition. Let (9,4, P) be a probability space and let T C R be time.
A collection of random variables X;, t € T with values in R is called a
stochastic process. If X; takes valuesin § = R4, it is called a vector-valued
stochastic process but one often abbreviates this by the name stochastic
process too. If the time T can be a discrete subset of R, then X; is called
a discrete time stochastic process. If time is an interval, R* or R, it is
called a stochastic process with continuous time. For any fixed w € (2, one
can regard X;(w) as a function of ¢. It is called a sample function of the
stochastic process. In the case of a vector-valued process, it is a sample
path, a curve in R4,

Definition. A stochastic process is called measurable, if X : T x Q — S is
measurable with respect to the product o-algebra B(T) x A. In the case of
a real-valued process (S = R), one says X is continuous in probability if
for any ¢ € R the limit X;+, — X takes place in probability for A — 0.
If the sample function X;(w) is a continuous function of ¢ for almost all w,
_then X, is called a continuous stochastic process. If the sample function is
a right continuous function in ¢ for almost all w € Q, X; is called a right
continuous stochastic process. Two stochastic process X; and Y; satisfying
P[X; —Y; = 0] = 1 for all t € T are called modifications of each other
or indistinguishable. This means that for almost all w € €, the sample
functions coincide X;(w) = Yi(w).

Definition. A R™-valued random vector X is called Gaussian, if it has the
multidimensional characteristic function

¢X(5) — E[eis-X] — e—-(s,Vs)/2+i(m,s)

191
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for some nonsingular symmetric n X n matrix V and vector m = E[X]. The
matrix V' is called covariance matrix and the vector m is called the mean
vector.

Example. A normal distributed random variable X is a Gaussian random
variable. The covariance matrix is in this case the scalar Var[X].

Example. If V is a symmetric matrix with determinant det(V') # 0, then
the random variable

(z) = ol emVtie-my2

—(2m)/2./det(V)

on ) = R" is a Gaussian random variable with covariance matrix V. To
see that it has the required multidimensional characteristic function ¢x ().
Note that because V is symmetric, one can diagonalize it. Therefore, the
computation can be done in a bases, where V is diagonal. This reduces the
situation to characteristic functions for normal random variables.

Example. A set of random variables X1, ..., X, are called jointly Gaussian
if any linear combination E?:l a;X; is a Gaussian random variable too.
For a jointly Gaussian set of of random variables X;, the vector X =
(X1,...,Xy) is a Gaussian random vector.

Example. A Gaussian process is a R%-valued stochastic process with con-
tinuous time such that (Xy,, Xt,,...,Xt,) is jointly Gaussian for any £y <
t1 < -+ < tp. It is called centered if m; = E[X;] = 0 for all £.

Definition. An R%-valued continuous Gaussian process X; with mean vector
m; = E[X;] and the covariance matrix V(s,t) = Cov[X,, X;] = E[(X, —
ms)-(X¢—my)*] is called Brownian motion if for any 0 < fp < t; < -+~ < tp,
the random vectors X, X;,,, — X;, are independent and the covariance
matrix V satisfies V(s,t) = V(r,r), where r = min(s,t) and s — Vs, s).
It is called the standard Brownian motion if m; = 0 for all ¢t and V(s,t) =
min{s,t}.

Figure. A path X;(w:1) of Brow-
nian motion in the plane S = R?
with a drift my = E[X;] = (¢,0).
This is mot standard Brownian
motion. The process Vi = X; —
(¢,0) is standard Brownian mo-
tion.
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Recall that for two random vectors X, Y with mean vectors m, n, the covari-
ance matrix is Cov[X, Y]i; = E[(X; —m;)(Y; —n;)]. We say Cov[X,Y] =0
if this matrix is the zero matrix.

Lemma 4.1.1. A Gaussian random vector (X,Y’) with random vectors X,Y
satisfying Cov[X,Y] = 0 has the property that X and Y are independent.

Proof. We can assume without loss of generality that the random variables
X,Y are centered. Two R™-valued Gaussian random vectors X and Y are’
independent if and only if

dx,v)(s,t) = dx(s) - oy (t),Vs,t € R"

Indeed, if V is the covariance matrix of the random vector X and W is the
covariance matrix of the random vector Y, then

u U COV[X,Y]}=|:U 0 ]

~ | Covly, X] 1% 0V

is the covariance matrix of the random vector (X,Y). With r = (¢,s), we
have therefore

¢(X,y)(7') = E[eir‘(x’y)]:e_%(T'Ur)
~3(s V)= (tWy)

]
a o

2
—%(3~Vs)e—%(t~Wt)

ox (s)py () .

O

Example. In the context of this lemma, one should mention that there
exist uncorrelated normal distributed random variables X,Y which are not
independent [109)]: Proof. Let X be Gaussian on R and define for o > 0 the
variable Y(w) = - X (w), ifw > o and Y = X else. Also Y is Gaussian and
there exists a such that E[XY] = 0. But X and Y are not independent and
X+Y = 0on[—a,a] shows that X +Y is not Gaussian. This example shows
why Gaussian vectors (X,Y) are defined directly as R? valued random
variables with some properties and not as a vector (X,Y) where each of
the two component is a one-dimensional random Gaussian variable.

Proposition 4.1.2. If X; is a Gaussian process with covariance V(s,t) =
V(r,r) with r = min(s, t), then it is Brownian motion.
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Proof. By the above lemma (4.1.1), we only have to check that for all i < j
Cov[Xiy, Xi,,, — Xi,] =0, Cov[Xy,,, — Xty Xt — Xt,]=0.

But by assumption
Cov[Xiy, Xt,,, — Xe,] = V(to, tj41) — V(to, tj) = V(to,t0) — V(to,t0) =0
and
CovXe,,, — Xt Xejpo — Xey] = Vi tjv1) — Vit ty)
=Vt tjr1) + V(ti, t;)
= V(tit1, tiv1) = V(s tir1)
=Vt ti) + V(ti,ti) =0.
O

Remark. Botanist Robert Brown was studying the fertilization process in a
species of flowers in 1828. While watching pollen particles in water through
a microscope, he observed small particles in “rapid oscillatory motion”.
While previous studies concluded that these particles were alive, Brown’s
explanation was that matter is composed of small ”active molecules” , which
exhibit a rapid, irregular motion having its origin in the particles themselves
and not in the surrounding fluid. Brown’s contribution was to establish
Brownian motion as an important phenomenon, to demonstrate its presence
in inorganic as well as organic matter and to refute by experiment incorrect
mechanical or biological explanations of the phenomenon. The book (73]
includes more on the history of Brownian motion.

The construction of Brownian motion happens in two steps: one first con-
structs a Gaussian process which has the desired properties and then shows
that it has a modification which is continuous.

Proposition 4.1.3. Given a separable real Hilbert space (H,|| - ||). There
exists a probability space (©2, A, P) and a family X (h), h € H of real-valued
random variables on Q such that h ~ X (h) is linear, and X (h) is Gaussian,
centered and E[X (h)2] = ||h]|?.

Proof. Pick an orthonormal basis {e,} in H and attach to each e, a cen-
tered Gaussian IID random variable X, € £2 satisfying || X,||2 = 1. Given
a general h = > hpe, € H, define

X(h) = hnXn

which converges in £2. Because X, are independent, they are orthonormal
in £ so that

IX ()15 = hallXnlla =D b2 = [IAll3 -
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g

Definition. If we choose H = L?(R*,dz), the map X : H +- £? is
also called a Gaussian measure. For a Borel set A C R* we define then
X(A) = X(14). The term "measure” is warranted by the fact that X (A) =
3, X (Ap) if A is a countable disjoint union of Borel sets A,. One also has
X () =0.

Remark. The space X (H) C £? is a Hilbert space isomorphic to H and in
particular

E[X (h)X (h)] = (R, k') .

We know from the above lemma that h and A’ are orthogonal if and only
if X (h) and X (h') are independent and that

E[X(A)X (B)] = Cov|X(4), X(B)] = (14,15) = |AN B| .

Especially X(A) and X(B) are independent if and only if A and B are
disjoint.

Definition. Define the process B; = X ([0,t]). For any sequence t1,%2,--- €
T, this process has independent increments B;, — B;,_, and is a Gaussian
process. For each t, we have E[BZ] =t and for s < t, the increment B — B
has variance t — s so that

E[B,B;] = E[B? + E[Bs(B; — B;)] =E[BZ] = 5.

This model of Brownian motion has everything except continuity.

Theorem 4.1.4 (Kolmogorov’s lemma). Given a stochastic process X; with
t € [a,b] for which there exist three constants p > r, K such that

E[|Xorn — XelP) S K - AT

for every t,t + h € [a,b], then X; has a modification Y; which is almost
everywhere continuous: for all s,t € [a, ]

Yy (w) - Ye(w)] € Cw) |t—8|*,0 < a < 5 :

Proof. We can assume without loss of generality that a = 0,b = 1 because
we can translate and rescale the time variable to be in this situation. Define
€ = r — ap. By the Chebychev-Markov inequality (2.5.4)

P([Xern — Xiel] 2 [AI] < A7 PE(|Xesn — XelP) < KR

so that
P X (k1y/2n — Xk/2n| 2 2779 < K270
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Therefore

n

oo 271
Z Z P['X(k+l)/’2n - Xk/2n| > 2—na] <o0.
n=1 k=0

By the first Borel-Cantelli’s lemma, (2.2.2), there exists n(w) < oo almost
everywhere such that for alln > n(w) and k=0,...,2" -1

[ X (k+1)/2n (W) = Xigyon (W) <277
Let n > n(w) and t € [k/27, (k+1)/2") of the form t = k/2"+ 31, 7:/2"+
with v; € {0,1}. Then

1 Xe(w) — Xpg-n ()| < D m27 ) < g 27me

i=1
with d = (1 — 27%)!. Similarly
Xy — Xgopryz-n| < d 277 .

Given t,t + h € D = {k2™™ | n € N,k = 0,...n — 1}. Take n so that
2-"-1 < h < 27" and k so that k/2"*! <t < (k+ 1)/2"*1. Then (k +
/2" <t+h < (k+3)/2"* and

| Xeqn — Xi| < 2d2- (e < 2dp> |
For almost all w, this holds for sufficiently small h.

We know now that for almost all w, the path X;(w) is uniformly continuous
on the dense set of dyadic numbers D = {k/2"}. Such a function can be
extended to a continuous function on [0, 1] by defining

)= B )

Because the inequality in the assumption of the theorem implies E[X,(w) —
limge pt Xs(w)] = 0 and by Fatou’s lemma E[Y;(w) —limse p—¢ Xs(w)] =0
we know that X, = Y; almost everywhere. The process Y is therefore a
modification of X. Moreover, Y satisfies

Yi(w) - Ys(w)] < C(w) [t — s

for all s,t € [a,b]. O

Corollary 4.1.5. Brownian motion exists.
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Proof. In one dimension, take the process B; from above. Since Xp =
Bt+h — B, is centered with variance h, the fourth moment is E[X h]

W exp(—z2h/2)|z=0 = 3h?, so that
E[(Bi1n — B:)*] = 3h%.

Kolmogorov’s lemma (4.1.4) assures the existence of a continuous modifi-
cation of B.

To define standard Brownian motion in n dimension, we take the joint

motion B; = (B(l) Bt(")) of n independent one- dimensional Brownian
motions. d

Definition. Let B; be the standard Brownian motion. For any z € R", the
process XF = z + B; is called Brownian motion started at z.

The first rigorous construction of Brownian motion was given by Norbert
Wiener in 1923. By construction of a Wiener measure on C[0, 1], one has
a construction of Brownian motion, where the probability space is directly
given by the set of paths. One has then the process X;(w) = w(t). We will
come to this later. A general construction of such measures is possible given
a Markov transition probability function {104]. The construction given here
is due to Neveu and goes back to Kakutani. It can be found in Simon’s book
on functional integration [93] or in the book of Revuz and Yor [83] about
continuous martingales and Brownian motion. This construction has the
advantage that it can be applied to more general situations.

In McKean’s book ”Stochastic integrals” [66] one can find Lévy’s direct
proof of the existence of Brownian motion. Because that proof gives an ex-
plicit formula for the Brownian motion process B; and is so constructive,
we outline it shortly:

1) Take as a basis in L2([0, 1] the Haar functions
frm =202 (L 1y k2-n) = Lika-n,(k41)2-7])
for {(k,n)ln >1,k <2" } and foo = 1.

2) Take a family Xxn for (k,n) € I = {(k,n) |n > 1,k < 2",k odd } U
{(0,0) } of independent Gaussian random variables.

3) Define
By = an/ fkn .

(k n)el
4) Prove convergence of the above series.

5) Check

E[B.B]= ) //f(kn)fL_/o 1jo,5 10,4 = inf{s,t } .

(kn)er
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6) Extend the definition from ¢ € [0,1] to ¢t € [0, 00) by taking independent
Brownian motions B{" and defining B; — Eon<lt B™. | where [t] is the
largest integer smaller or equal to t.

4.2 Some properties of Brownian motion

We first want to establish that Brownian motion is unique. To do so, we
first have to say, when two processes are the same:

Definition. Two processes X; on (2, 4,P) and X} on (€, A, P’) are called
indistinguishable, if there exists an isomorphism U : Q@ — ¥’ of probability
spaces, such that X/(Uw) = X;(w). Indistinguishable processes are consid-
ered the same. A special case is if the two processes are defined on the same
probability space (©2,.4,P) and X;(w) = Y;(w) for almost all w.

Proposition 4.2.1. Brownian motion is unique in the sense that two stan-
dard Brownian motions are indistinguishable.

Proof. The construction of the map H — £? was unique in the sense that
if we construct two different processes X (h) and Y (h), then there exists an
isomorphism U of the probability space such that X (h) = Y (U(h)). The
continuity of X; and Y; implies then that for almost all w, X;(w) = Y;(Uw).
In other words, they are indistinguishable. a

We are now ready to list some symmetries of Brownian motion.

Theorem 4.2.2 (Properties of Brownian motion). The following symmetries
exist: _

(i) Time-homogeneity: For any s > 0, the process By = Byy, — B, is a
Brownian motion independent of o(B,,u < s).

(ii) Reflection symmetry: The process B; = —B; is a Brownian motion.
(iii) Brownian scaling: For every ¢ > 0, the process B; = ¢B, /c2 is a Brow-
nian motion.

(iv) Time inversion: The process By = 0, B, = tB, /t>t > 0 is a Brownian
motion.

Proof. (i),(ii),(iil) In each case, B; is a continuous centered Gaussian pro-
cess with continuous paths, independent increments and variance ¢.
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(iv) B is a centered Gaussian process with covariance
. L .11 .
Cov|Bs, Bi] = E[Bs, By) = st - E[By/s, Biye] = st - mf(;, E) = inf(s,t) .

Continuity of B, is obvious for t > 0. We have to check continuity only for
t = 0, but since E[B2] = s — 0 for s — 0, we know that B, — 0 almost
everywhere. a

It follows the strong law of large numbers for Brownian motion:

Theorem 4.2.3 (SLLN for Brownian motion). If B; is Brownian motion,
then

1
lim —Bt =0
t—oo t

almost surely.

Proof. From the time inversion property (iv), we see that t"lBtw = By
which converges for t — oo to 0 almost everywhere, because of the almost
everywhere continuity of Bj. O

Definition. A parameterized curve t € [0,00) — X; € R" is called Hélder
continuous of order « if there exists a constant C such that

| Xetn — Xel| <C - B®

for all A > 0 and all . A curve which is Holder continuous of order o = 1
is called Lipshitz continuous.

The curve is called locally Holder continuous of order « if there exists for
each t a constant C = C(t) such that

| Xe4n — Xl < C - B
for all small enough h. For a R%-valued stochastic process, (local) Holder

continuity holds if for almost all w € 2 the sample path X:(w) is (local)
Hoélder continuous for almost all w € Q.

Proposition 4.2.4. For every o < 1/2, Brownian motion has a modification
which is locally Holder continuous of order a.
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Proof. 1t is enough to show it in one dimension because a vector func-
tion with locally Holder continuous component functions is locally Holder
continuous. Since increments of Brownian motion are Gaussian, we have

E[(B: — Bs)**] = Cp - [t — sI”

for some constant C,. Kolmogorov’s lemma assures the existence of a mod-
ification satisfying locally

~1
B, —By| <Clt—s]*0<a<’—.
2p

Because p can be chosen arbitrary large, the result follows. O

Because of this proposition, we can assume from now on that all the paths
of Brownian motion are locally Holder continuous of order o < 1/2.

Definition. A continuous path X; = (Xt(l),...,Xt(")) is called nowhere

differentiable, if for all ¢, each coordinate function Xt(i) is not differentiable
at t.

Theorem 4.2.5 (Wiener). Brownian motion is nowhere differentiable: for
almost all w, the path ¢ — X;(w) is nowhere differentiable.

Proof. We follow [66]. It is enough to show it in one dimensions. Suppose
B; is differentiable at some point 0 < s < 1. There exists then an integer !
such that |B; — Bs| < I(t — s) for t — s > 0 small enough. But this means
that

l
1Bj/n ~ Bj—vy/ml <7
for all j satisfying
i=[ns]+1<j<[ns]+4=1i+3

and sufficiently large n so that the set of differentiable paths is included in
the set

B=UUN U N 0Bim-Bonml <75}

1>1m>1n>m0<i<n+1i<j<i+3
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Using Brownian scaling, we show that P[B] = 0 as follows

PN U () {IBin — Byl < 7% }

n>m 0<i<n+1i<j<i+3

l
< liminfnP[IBl/n|<7ﬁ]3
= 1iminfnP[|Bl|<7~\/l—T_;]3
< lim —=0.

n—oo \/_
O

Remark. This proposition shows especially that we have no Lipshitz con-
tinuity of Brownian paths. A slight generalization shows that Brownian
motion is not Holder continuous for any & > 1/2. One has just to do the
same trick with k instead of 3 steps, where k(o — 1/2) > 1. The actual
modulus of continuity is very near to a = 1/2: |By — Bi4| is of the order

h(e) = 1/2¢ 1og(1) .
More precisely, P[limsup,_,qsup|,_s <. ij'[ = 1] = 1, as we will see
later in theorem (4.4.2).
The covariance of standard Brownian motion was given by E[B;B;] =
min{s, t}. We constructed it by implementing the Hilbert space L?([0, )
as a Gaussian subspace of £2(, A, P). We look now at a more general class
of Gaussian processes.

Definition. A function V : T x T — R is called positive semidefinite,
if for all finite sets {¢1,...,tq} C T, the matrix V;; = V(¢;,t;) satisfies
(u, Vu) > 0 for all vectors u = (uy,...,un).

Proposition 4.2.6. The covariance of a centered Gaussian process is positive
semidefinite. Any positive semidefinite function V on T'x T is the covariance
of a centered Gaussian process X;.

Proof. The first statement follows from the fact that for all u = (u1,...,un)

D V(i ty)uiu; = E[( Zu,Xt 1>0.
1,3

We introduce for ¢t € T a formal symbol é;. Consider the vector space of
finite sums E —1 @36, with inner product

(Z a;dy,, Z bior,) = D aib;V(ti, t;)
i=1 j=1 i,
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This is a positive semidefinite inner product. Multiplying out the null vec-
tors {||[v]| = 0 } and doing a completion gives a separable Hilbert space
H. Define now as in the construction of Brownian motion the process
X; = X(4;). Because themap X : H — L? preserves the inner product, we
have

E[Xt,Xs] = ((53,615) = V(S,t) .

Lets look at some examples of Gaussian processes:

Example. The Ornstein-Uhlenbeck oscillator process X is a one-dimensional
process which is used to describe the quantum mechanical oscillator as we
will see later. Let T = R* and take the function V(s,t) = %e"t_s| on
T x T'. We first show that V is positive semidefinite: The Fourier transform
of f(t) =e 1t is

1

ikt —|t|dt — .
/Re ¢ om(kZ + 1)

By Fourier inversion, we get
1 , 1
- k_2 1 -1 _ik(t—s) dk = = —jt—s]| ,
o /R( +1)7 e 5¢

and so

0 < (27r)—1/(k2+1)-1§:|ujeiktf|2 dk
R -
7

- 1
= E wjug=e 1t
2
Jrk=1

This process has a continuous modification because
E[(X; — Xa)?] = (7171 + e7o7%l —2e71t=8l) /2 = (1 — e7H%l) < [t — |

and Kolmogorov’s criterion. The Ornstein-Uhlenbeck is also called the os-
cillatory process.

Proposition 4.2.7. Brownian motion B; and the Ornstein-Uhlenbeck pro-
cess Oy are for t > 0 related by
1
O, = _—e_tBEZt .

V2

Proof. Denote by O the Ornstein-Uhlenbeck process and let

X, =2"2e"tB,. .
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We want to show that X = Y. Both X and O are centered Gaussian,
continuous processes with independent increments. To verify that they are
the same, we have to show that they have the same covariance. This is a
computation:

1
E[0:0;] = §e—te_s min{e?,e* } = el*7t/2.

It follows from this relation that also the Ornstein-Uhlenbeck process is
not differentiable almost everywhere. There are also generalized Ornstein-
Uhlenbeck processes. The case V(s,t) = [ e *(=%) du(k) = At - s)
with the Cauchy measure y = 5;(—,5124_—1)dz on R can be generalized to take
any symmetric measure yu on R and let 4 denote its Fourier transform
Ja €™t du(k). The same calculation as above shows that the function
V(s,t) = (t — s) is positive semidefinite.

Figure. Three paths of the
Ornstein-Uhlenbeck process.

Example. Brownian bridge is a one-dimensional process with time T' =
[0,1) and V(s,t) = s(1 —t) for 1 <s <t <1and V(s,t) = V(t,s) else. It
is also called tied down process.

In order to show that V is positive semidefinite, one observes that X; =
B, — sB; is a Gaussian process, which has the covariance

E[X;X:]| = E[(Bs — sB1)(B: — tB;)] = s+ st —2st = s(1 — t) .

Since E[X?] = 0, we have X; = 0 which means that all paths start from 0
at time 0 and end at 1 at time 1.

The realization X; = B, — sB; shows also that X; has a continuous real-
ization.
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Figure. Three paths of Brownian
bridge.

Let X; be the Brownian bridge and let y be a point in R%. We can consider
the Gaussian process Y; = ty + X; which describes paths going from 0 at
time O to y at time 1. The process Y has however no more zero mean.
Brownian motion B and Brownian bridge X are related to each other by
the formulas:

Bt = Bt = (l‘ + 1)Xt/(t+1)7 Xt = Xt = (1 - t)Bt/(l—t) .

These identities follow from the fact that both are continuous centered
Gaussian processes with the right covariance:

E[B,B;] (t+1)(s + 1) min{-—— } =min{s,t} = E[B,By],

(t+1) (s+1)

EX,X] = (1-t)(1—s)min{ } =s(1—t) = E[X, X,

(1-35)" (1-1%)

and uniqueness of Brownian motion.

Example. If V(s,t) = 1(,—;}, we get a Gaussian process which has the
property that X, and X, are independent, if s # t. Especially, there is no
autocorrelation between different X, and X;. This process is called white
noise or ”great disorder”. It can not be modified so that (¢,w) — X;(w) is
measurable: if (¢,w) — X¢(w) were measurable, then Y; = fot X, ds would
be measurable too. But then

BY?) = El( [ Xy = / t / "By X] de’ ds = 0

which implies ¥; = 0 almost everywhere so that the measure du(w) =
Xs(w) ds is zero for almost all w.

t=E[/X2]—E[/XX ds] = /Xdus)]—()

In a distributional sense, one can see Brownian motion as a solution of
the stochastic differential equation and white noise as a generalized mean-
square derivative of Brownian motion. We will look at stochastic differential
equations later.
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Example. Brownian sheet is not a stochastic process with one dimensional
time but a random field: time 7' = R? is two dimensional. Actually, as
long as we deal only with Gaussian random variables and do not want to
tackle regularity questions, the time T can be quite arbitrary and proposi-
tion (4.2.6) stated at the beginning of this section holds true. The Gaussian
process with

V((s1.82), (t1,t2)) = min(sy, 1) - min(ssa, t2)

is called Brownian sheet. It has similar scaling properties as Brownian mo-
tion.

Figure. Illustrating a sample of a
Brownian sheet By 5. Time is two
dimensional. Every trace By =
Bt s, or By = By, 18 standard
Brownian motion.

4.3 The Wiener measure

Let (E,£) be a measurable space and let T be a set called "time”. A
stochastic process on a probability space (€2, A, P) indexed by T and with
values in E defines a map

6:0— ET we Xy(w) .

The product space E7 is equipped with the product o-algebra ET, which
is the smallest algebra for which all the functions X, are measurable which
is the o-algebra generated by the m-system

{ I Au={z€ET.2, €A} | Ay €E}
t1icnrln
consisting of cylinder sets. Denote by Y;(w) = w(t) the coordinate maps on
ET. Because Y; o ¢ is measurable for all t, also ¢ is measurable. Denote by
Py the push-forward measure of ¢ from (2,4, P) to (ET,ET) defined by
Px[A] = P[X~!(A)]. For any finite set (t1,...,t,) C T and all sets A; € £,
we have

P[X;‘ [= A;,T‘- = 1....,'.’1] s P_)([Yf. € A, 1= 1,...71] :

One says, the two processes X and Y are versions of each other.
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Definition. Y is called the coordinate process of X and the probability
measure Px is called the law of X.

Definition. Two processes X, X’ possibly defined on different probability
spaces are called versions of each other if they have the same law Px = Px..

One usually does not work with the coordinate process but prefers to work
with processes which have some continuity properties. Many processes have
versions which are right continuous and have left hand limits at every point.

Definition. Let D be a measurable subset of ET and assume the process has
a version X such that almost all paths X (w) are in D. Define the probability
space (D,ET N D, @), where Q is the measure Q = ¢*P. Obviously, the
process Y defined on (D, ETn D, Q) is another version of X. If D is right
continuous with left hand limits, the process is called the canonical version
of X.

Corollary 4.3.1. Let E = R% and T = R*. There exists a unique probability
measure W on C(T, E) for which the coordinate process Y is the Brownian
motion B.

Proof. Let D = C(T,E) C ET. Define the measure W = ¢*Px and let
Y be the coordinate process of B. Uniqueness: assume we have two such
measures W, W’ and let Y, Y’ be the coordinate processes of B on D with
respect to W and W’. Since both Y and Y’ are versions of X and ”being
a version” is an equivalence relation, they are also versions of each other.
This means that W and W’ coincide on a 7- system and are therefore the
same. : O

Definition. If E = R and T = [0, o), the measure W on C(T, E) is called
the Wiener measure. The probability space (C(T, E),ET NC(T, E), W) is
called the Wiener space.

Let B’ be the o-algebra £7 N C(T, E), which is the Borel o-algebra re-
stricted to C(T, E). The space C(T, E) carries an other o-algebra, namely
the Borel o-algebra B generated by its own topology. We have B ¢ B/,
since all closed balls {f € C(T,E) | |f — fo| <7} € B are in B". The other
relation B’ C B is clear so that B = B'. The Wiener measure is therefore a
Borel measure.

Remark. The Wiener measure can also be constructed without Brownian
motion and can be used to define Brownian motion. We sketch the idea.
Let S = R™ denote the one point compactification of R”. Define 2 = S04
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be the set of functions from [0,¢] to S which is also the set of paths in R"
It is by Tychonov a compact space with the product topology. Define

Crin(Q) = {¢ € C(QR) | 3F : R” = R, ¢(w) = F(w(tr),...,w(ta))} -
Define also the Gauss kernel p(z, y, t) = (47t)~™/? exp(—|z—y|?/4t). Define
on Cfin(€2) the functional

(L¢)(31,...,Sm) = ‘/( F(-'L'I,x%---axm)p(07x1aSl)p(xlaz2732)

Rn)m
- p(Tm=1,Tm, 8m) dT1 + - dTm
with s; = t; and sy = tx — tx_1 for k > 2. Since L(¢) < |$(w)]oo, it
is a bounded linear functional on the dense linear subspace Cyin(2) C
C(Q). It is nonnegative and L(1) = 1. By the Hahn Banach theorem, it
extends uniquely to a bounded linear functional on C(£2). By the Riesz

representation theorem, there exists a unique measure p on C(f2) such that
L(¢) = [ ¢(w) du(w). This is the Wiener measure on 2.

4.4 Lévy’s modulus of continuity

We start with an elementary estimate

Lemma 4.4.1.

2
e /2

a?+1

-l-e_a2/2 > /00 e /2 4z >
a a

Proof.
oo 2 o0 2 1 2
/ e /2 d:r</ e %(z/a) dr = =" /2.
a a
For the right inequality consider

/ ﬁe—pﬂ db < 5-2-/ e=2/2 4y .

Integrating by parts of the left hand side of this gives

o0
le_“z/2 - / e 2 dr < 1 /oo e~ /2 dr .
a o a? J,
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Theorem 4.4.2 (Lévy’s modulus of continuity). If B is standard Brownian

motion, then
lBs — Bt‘

Pllimsup sup =1=1,
[ €—>0p|s—t|$e h(C) ]
where h(e) = /2¢elog(1/e).
Proof. We follow [83]:
(i) Proof of the inequality "> 17.
Take 0 < 6 < 1. Define an, = (1 — 8)h(27" 8)v/n2log2. Consider

P[An] = P[lg}c%n |Brg-» — Bk—1)2-=| < @n] -

Because By /on — B(i—1)/2n are independent Gaussian random variables, we
compute, using the above lemma (4.4.1) and 1 —s <e™*

o0 1 2 n
PlA,] < (1-2 ——e % /2 dz)?
A i

[12%% .2 n
< 1—9—"" a /2\2
s a2 + 1° )
“.ﬂe—aiﬂ) <

e—Cexp("(l—(l—ts)z)/\/ﬁ)
a2 +1 ’

< exp(-2

where C is a constant independent of n. Since Y, P[4n] < oo, we get by
the first Borel-Cantelli that P[limsup, A,] = 0 so that

P[ lim max |Bra-n — Be—1)2n| 2 h(27")] = 1.

n—00 1<k<

(ii) Proof of the inequality "< 17.
Take again 0 < § < 1 and pick € > 0 such that (1 +¢)(1 —8) > (1 + ).
Define

Plaa] = [k_g ax |Bjp-n = Bign|/h(k27) > (1+¢)
= U {|Bjz-» — Big-n|] = ank},
k:j—ieK

where
K={0<k<2™}

and a,x = h(k27™)(1 +¢€).
Using the above lemma, we get with some constants C which may vary
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from line to line:

PlAn] < Za;}ke’“ivkﬂ

. kek
< C- Z log(k—lzn)—1/2e—(1+e)21og(k‘12")
keK
< C- 9—n(1-8)(1+e)* Z (log(k:‘12"))"1/2 ( since k™' > 27 m%)

keK
< C.n-M2gr-U-80Fah)

In the last step was used that there are at most 2 points in K and for
each of them log(k~12") > log(2"(1 — 9)).
We see that 3, P[An] converges. By Borel-Cantelli we get for almost every
w an integer n{w) such that for n > n(w)

|Bjg-n — Big-n| < (1 +¢€) - h(k27"),
where k = j — i € K. Increase possibly n(w) so that for n > n(w)

ST <e h(2~(n+1A=8)y

m>n

Pick 0 < t; < tz < 1 such that ¢ = t2 — t1 < 9-n(w)(1~8) Take next
n > n(w) such that 9—(n+1)(1-8) < ¢ < 2771~ and write the dyadic
development of t,12:

f =42 " —27TPL 272ty =277 4270 272
with t; <i2-" < j2 " <tpand 0 < k=j —i< 2" <2 We get

|Bt, (w) — B, (w)| < |Bt, — Biy-n(w)|
+|Big-n(w) — Bja-n(w)]
+|Bjz-n(w) — Bt
< 23 (1+eh27P) + (1 +oh(k2T")

< (14 3e+2€%)h(t) .

Because € > 0 was arbitrary, the proof is complete. O

4.5 Stopping times

Stopping times are useful for the construction of new processes, in proofs
of inequalities and convergence theorems as well as in the study of return
time results. A good source for stopping time results and stochastic process
in general is [83].

Definition. A filtration of a measurable space (£, A) is an increasing family
(At)e>0 of sub-o-algebras of A. A measurable space endowed with a filtra-
tion (At )e>o is called a filtered space. A process X is called adapted to the
filtration A, if X; is A;-measurable for all ¢.
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Definition. A process X on (R, A,P) defines a natural filtration Ay =
o(X, | s < t), the minimal filtration of X for which X is adapted. Heuris-
tically, A; is the set of events, which may occur up to time ¢.

Definition. With a filtration we can associate two other filtration by setting
fort >0
A = oAy, 5 <t), A =[] As .
s>t
For t = 0 we can still define Ao+ = ﬂs>0 A, and define Ay- = Ag. Define
also Ao = 0(A4,,5 > 0).

Remark. We always have A4,- C A; C A+ and both inclusions can be
strict.

Definition. If A; = A,+ then the filtration At is called right continuous. If
At = A;-, then A, is left continuous. As an example, the filtration A+ of
any filtration is right continuous.

Definition. A stopping time relative to a filtration Asisamap T : Q —
[0, 00] such that {T <t} € A,.

Remark. If A; is right continuous, then T is a stopping time if and only
if{T<t}eA. Also T is a stopping time if and only if X; = Lio,(t) is
adapted. X is then a left continuous adapted process.

Definition. If T is a stopping time, define
Ar ={A€ A | AN{T < t} € A, Vt}.

It is a o-algebra. As an example, if T = s is constant, then A1 = A,. Note
also that
Ar+ ={A € A | AN{T < t} € A, Vt} .

We give examples of stopping times.

Proposition 4.5.1. Let X be the coordinate process on C(Ry, E), where E
is a metric space. Let A be a closed set in E. Then the so called entry time

Tp(w)=inf{t > 0| Xy(w) € A}

is a stopping time relative to the filtration A; = o({Xs }s<t)-

Proof. Let d be the metric on E. We have
{Ta<t}= {,pf_, d(Xs(w), 4) =0}

which is in A; = o(X,,z < t). O
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Proposition 4.5.2. Let X be the coordinate process on D(R,, E), the space
of right continuous functions, where E is a metric space. Let A be an open
subset of E. Then the hitting time

Ta(w) =inf{t > 0] Xy(w) € A}

is a stopping time with respect to the filtration At

Proof. T is a A+ stopping time if and only if {Ta < t} € A, for all t.
If A is open and X,(w) € A, we know by the right-continuity of the paths
that X;(w) € A for every t € [s, s + €) for some € > 0. Therefore

{T4<t}= {se&gﬂ)(, ceA}eA.

O

Definition. Let A; be a filtration on ({2, A) and let T be a stopping time.
For a process X, we define a new map X on the set {T < oc} by

Xr(w) = X (W) -

Remark. We have met this definition already in the case of discrete time
but in the present situation, it is not clear whether X7 is measurable. It
turns out that this is true for many processes.

Definition. A process X is called progressively measurable with respect to a
filtration A, if for all £, the map (s,w) — X (w) from ([0, t] x €2, B([0, ] x Ay)
into (E, £) is measurable.

A progressively measurable process is adapted. For some processes, the
inverse holds:

Lemma 4.5.3. An adapted process with right or left continuous paths is
progressively measurable.

Proof. Assume right continuity (the argument is similar in the case of left
continuity). Write X as the coordinate process D([0,t], E). Denote the map
(s,w) — X,(w) with Y = Y (s,w). Given a closed ball U € £. We have to
show that Y=1(U) = {(s,w) | Y(s,w) € U} € B([0,t]) x As. Given k =N,
we define Egy = 0 and inductively for k > 1 the K’th hitting time (a
stopping time)

Hiu(w) = inf{s eQ | Errv(w) <s<t, X, eU }
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as well as the k’th exit time (not necessarily a stopping time)
Epu(w) =inf{s € QHyp(w) <s<t, X, ¢U}.

These are countably many measurable maps from D([0,1], E) to [0,t]. Then
by the right-continuity

Y7'U) = (J{(s5,w) | Hep(w) <s < Eru(w)}
k=1

which is in B([0,¢]) x A,. O

Proposition 4.5.4. If X is progressively measurable and 7T is a stopping
time, then X7 is Ar-measurable on the set {T < oo}

Proof. The set {T < oo} is itself in Ag. To say that X is Ar- measurable
on this set is equivalent with X7 - Lir<ty € A; for every t. But the map

S:({T <t}, An{T < t}) — (0,1, Bjo,1])

is measurable because T is a stopping time. This means that the map
w = (T(w),w) from (2, A;) to ([0,¢] x Q, B([0,¢]) x At) is measurable and
Xt is the composition of this map with X which is B [0,¢] x A; measurable
by hypothesis. a

Definition. Given a stopping time 7 and a process X, we define the stopped
process (Xr):(w) = X7at(w).

Remark. If A, is a filtration then 4,57 is a filtration since if Ty and T are
stopping times, then T} A T} is a stopping time.

Corollary 4.5.5. If X is progressively measurable with respect to .4; and
T is a stopping time, then (X7); = X;r7 is progressively measurable with
respect to Asnr.

Proof. Because t AT is a stopping time, we have from the previous propo-
sition that X7 is A;x7 measurable.

We know by assumption that ¢ : (s,w) — X,(w) is measurable. Since also
Y : (s,w) — (s AT)(w) is measurable, we know also that the composition
(8,w) > X1(w) = Xy(s,0) (W) = ¢(¥(s,w), w) is measurable. a
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Proposition 4.5.6. Every stopping time is the decreasing limit of a sequence
of stopping times taking only finitely many values.

Proof. Given a stopping time T, define the discretisation T = +00 ifT >k
and Tp = q2 % if (¢ —1)27*<T <gq 2~k g < 2Fk. Each T} is a stopping
time and T} decreases to T'. O

Many concepts of classical potential theory can be expressed in an elegant
form in a probabilistic language. We give very briefly some examples with-
out proofs, but some hints to the literature.

Let B; be Brownian motion in R? and T4 the hitting time of a set A C Re.
Let D be a domain in R¢ with boundary §(D) such that the Green function
G(z,y) exists in D. Such a domain is then called a Green domain.

Definition. The Green function of a domain D is defined as the fundamental
solution satisfying AG(z,y) = §(z—y), where §(z —y) is the Dirac measure
at y € D. Having the fundamental solution G, we can solve the Poisson
equation Au = v for a given function v by

u= /DG(w,y) u(y) dy

The Green function can be computed using Brownian motion as follows:

G(z,y) = / g(t,z,y) dt,
0

where for z € D,

[ otz dy = PolBi € C.Top > 1
c
and P, is the Wiener measure of B; starting at the point z.

We can interpret that as follows. To determine G(z,y), consider the killed
Brownian motion B; starting at z, where T is the hitting time of the bound-
ary. G(z,y) is then the probability density, of the particles described by the
Brownian motion.

Definition. The classical Dirichlet problem for a bounded Green domain
D € R? with boundary 6D is to find for a given function f € C(6(D)), a
solution u € C(D) such that Au = 0 inside D and

lim u(z) = f(y)

z—y,x€D

for every y € 6D.
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This problem can not be solved in general even for domains with piecewise
smooth boundaries if d > 3.

Definition. The following example is called Lebesgue thorn or Lebesgue
spine has been suggested by Lebesgue in 1913. Let D be the inside of a
spherical chamber in which a thorn is punched in. The boundary 6D is
held on constant temperature f, where f = 1 at the tip of the thorn y
and zero except in a small neighborhood of y. The temperature u inside
D is a solution of the Dirichlet problem Apu = 0 satisfying the boundary
condition 4 = f on the boundary §D. But the heat radiated from the thorn
is proportional to its surface area. If the tip is sharp enough, a person sitting
in the chamber will be cold, no matter how close to the heater. This means
liminfz .y zep u(z) < 1= f(y). (For more details, see [43, 46]).

Because of this problem, one has to modify the question and one says, u is
a solution of a modified Dirichlet problem, if u satisfies Apu = 0 inside D
and limy_y zepu(z) = f(y) for all nonsingular points y in the boundary
0D. Irregularity of a point y can be defined analytically but it is equivalent
with Py[Tpe > 0] = 1, which means that almost every Brownian particle
starting at y € §D will return to 8D after positive time.

Theorem 4.5.7 (Kakutani 1944). The solution of the regularized Dirichlet
problem can be expressed with Brownian motion B; and the hitting time
T of the boundary:

u(z) = Ec[f(Br)] -

In words, the solution u(z) of the Dirichlet problem is the expected value
of the boundary function f at the exit point By of Brownian motion B,
starting at z. We have seen in the previous chapter that the discretized
version of this result on a graph is quite easy to prove.

Figure. To solve the Dirichlet
problem in a bounded domain
with Brownian motion, start the
process at the point x and run it
until it reaches the boundary Br,
then compute f(Br) and aver-
age this random variable over all
paths w.
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Remark. Ikeda has discovered that there exists also a probabilistic method
for solving the classical von Neumann problem in the case d = 2. For more
information about this, one can consult [43, 79]. The process for the von
Neumann problem is not the process of killed Brownian motion, but the
process of reflected Brownian motion.

Remark. Given the Dirichlet Laplacian A of a bounded domain D. One
can compute the heat flow e **u by the following formula

(e7*Au)(z) = Eo[u(By)it <TI,

where T is the hitting time of 6D for Brownian motion B, starting at z.

Remark. Let K be a compact subset of a Green domain D. The hitting
probability
p(.’l)) = Px[TK < TgD]

is the equilibrium potential of K relative to D. We give a definition of the
equilibrium potential later. Physically, the equilibrium potential is obtained
by measuring the electrostatic potential, if one is grounding the conducting
boundary and charging the conducting set B with a unit amount of charge.

4.6 Continuous time martingales

Definition. Given a filtration .A; of the probability space (2,4, P). A real-
valued process X; € L! which is A; adapted is called a submartingale, if
E[X:|As] > X, it is called a supermartingale if —X is a submartingale
and a martingale, if it is both a super and sub-martingale. If additionally
X; € LP for all t, we speak of LP super or sub-martingales.

We have seen martingales for discrete time already in the last chapter.
Brownian motion gives examples with continuous time.

Proposition 4.6.1. Let B; be standard Brownian motion. Then B;, B? —t
and e*B:=2’t/2 gre martingales.

Proof. B; — B; is independent of B,. Therefore
E[B; | As] — Bs = E[B; — Bs|As] = E[B; — B,] =0.
Since by the ”extracting knowledge” property
E[B:B, | A] = Bs -E[B; | As] =0,
we get

E[B} —t| As] - (B} - )

I

E[B? - B} | As] - (t - 9)
E[(B: — Bs)? | As) — (t —s) =0.

i
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Since Brownian motion begins at any time s new, we have
E[ea(B“Bs)lAs] = E[e®Be-4] = e (t—8)/2

from which R )
E[eaBtlAs]e—a t/2 _ E[eaBs]e—a 8/2

follows. i ' d

As in the discrete case, we remark:

Proposition 4.6.2. If X, is a LP-martingale, then | X;|P is a submartingale
forp > 1.

Proof. The conditional Jensen inequality gives
E[|X:[P|As] 2 |E[X| AP = | X7 .
d

Example. Let X,, be a sequence of IID exponential distributed random
variables with probability density fx(z) = e~“®c. Let S, = 3_,_, Xx. The
Poisson process N; with time 7' = R* = [0, 00) is defined as

[o3]
Nt = Z lskSt .
k=1

It is an example of a martingale which is not continuous, This process
takes values in N and measures, how many jumps are necessary to reach
t. Since E[V;] = ct, it follows that N; — ct is a martingale with respect to
the filtration A; = o(N,, s < t). It is a right continuous process. We know
therefore that it is progressively measurable and that for each stopping
time T, also N7 is progressively measurable. See [49] or the last chapter
for more information about Poisson processes.

Figure. The Poisson point pro-

cess on the line. N; is the num-

ber of events which happen up to $23% 5 $59% B
time t. It could model for exam- B R I e e e IR )
ple the number N, of hits onto a

website.



4.7. Doob inequalities 217

Proposition 4.6.3. (Interval theorem) The Poisson process has independent
increments

o5}
Nt e Ns = Z 18<Snst .
n=1

Moreover, N, is Poisson distributed with parameter tc:

(te)*
K

—tc

Proof. The proof is done by starting with a Poisson distributed process V.
Define then
Spw)={t| Ne=n,Nyo=n—-1}

and show that X,, = S, — Snp—1 are independent random variables with
exponential distribution. O

Remark. Poisson processes on the lattice Z¢ are also called Brownian mo-
tion on the lattice and can be used to describe Feynman-Kac formulas for
discrete Schrédinger operators. The process is defined as follows: take X
as above and define

o0
}/t = Z Zklskft )
k=1

where Z,, are IID random variables taking values in {m € Z%|m| = 1}.
This means that a particle stays at a lattice site for an exponential time
and jumps then to one of the neighbors of n with equal probability. Let
P, be the analog of the Wiener measure on right continuous paths on the
lattice and denote with E, the expectation. The Feynman-Kac formula for
discrete Schrodinger operators H = Ho+V is

(e—itH u)(n) = ezthn[u(Xt)iN‘e_ift; V(Xs) ds] )

4.7 Doob inequalities

We have already established inequalities of Doob for discrete times 7' = N.
By a limiting argument, they hold also for right-continuous submartingales.

Theorem 4.7.1 (Doob’s submartingale inequality). Let X be a non-negative
right continuous submartingale with time T = [a,b]. For any € > 0

¢-P[sup X;>¢€ <E[Xp;{sup X¢2> €}] < E[Xs) .
a<t<h a<t<b




218 Chapter 4. Continuous Stochastic Processes

Proof. Take a countable subset D of T and choose an increasing sequence
D,, of finite sets such that U,, Dn = D. We know now that for all n

€-Plsup X; > €] <E[X;{sup X, > e}] <E[Xy] .
teD, teD,

since E[X;] is nondecreasing in t. Going to the limit n — oo gives the claim
with T' = D. Since X is right continuous, we get the claim for T = [a,b]. O

One often applies this inequality to the non-negative submartingale | X| if
X is a martingale.

Theorem 4.7.2 (Doob’s L? inequality). Fix p > 1 and g satisfying p~! +
¢! = 1. Given a non-negative right-continuous submartingale X with
time T' = [a, 5] which is bounded in £?. Then X* = sup,.y X, is in £ and
satisfies
1X* Iy < q-sup | X[l -
teT

Proof. Take a countable subset D of T and choose an increasing sequence
Dy, of finite sets such that | J,, D, = D.
We had

Il sup X|| < g- sup [IX:]l, .
teD, teDy,
Going to the limit gives
|Isup X:|| < g - sup || X[l .
teD teD

Since D is dense and X is right continuous we can replace D by T. a

The following inequality measures, how big is the probability that one-
dimensional Brownian motion will leave the cone {(t,z),|z| < a - t}.

Theorem 4.7.3 (Exponential inequality). S; = SUpg<,<: Bs satisfies for any
a>0 ,
P(S;>a-t]<e™®¥2,

&2 .
Proof. We have seen in proposition (4.6.1) that M, = e*Bt—°* is a mar-
tingale. It is nonnegative. Since

2t 2t o?s
exp(aS; — =2) < exp(sup B, — 22) < supexp(B, — L) = sup M,
2 s<t 2 s<t 2 s<t
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we get with Doob’s submartingale inequality (4.7.1)

a2t
P[S: > at] < PlsupM, > e =27
s<t

ot
< exp(—aat+ T)E[Mt] .

The result follows from E[B;] = E[By] = 1 and infs0 exp(—aat + "T%)

0O

exp(—“—t .
An other corollary of Doob’s maximal inequality will also be useful.
Corollary 4.7.4. For a,b > 0,
Pl sup (B — =) > f]<e .
s€[0,1] 2
Proof.
s
P[sup (B, — ) 2p] < P[sup (B, ——)>ﬂ]
s€[0,1] s€(0,1]
= P[sup (e*P+m7F) > &
s€[0,1]
= P[sup M, > eP?
s€{0,1)
< e P sup E[M,] =e P
s€[0,1]
since E[M,] =1 for all s. d0

4.8 Khintchine’s law of the iterated logarithm

Khinchine’s law of the iterated logarithm for Brownian motion gives a pre-
cise statement about how one-dimensional Brownian motion oscillates in a
neighborhood of the origin. As in the law of the iterated logarithm, define

A(t) = +/2tlog|logt]| .

Theorem 4.8.1 (Law of iterated logarithm for Brownian motion).

P[hmsup A(t) —1]=1, P[li{riiglfﬂ_ —_1]=1

AQt)
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Proof. The second statement follows from the first by changing B; to —B;.

(i) limsup,_.q HB:T < 1 almost everywhere:
Take 6,0 € (0,1) and define

A(gﬂ)
2 i

We have a3, = loglog(8™)(1 + &) = log(n) log(f). From corollary (4.7.4),
we get

an = (1+8)07"A(0"), Bn =

ans

P[sup(Bs —

). 2:0a) % €2 = KT,
s<1 2

The Borel-Cantelli lemma assures

P(lim inf sup(Bs

n—+00 sCl

=1

which means that for a.lmost every w, there is ng(w) such that for n > ng(w)
and s € [0,0"71),

s g (146) 1., ..
Bs(u)gawa§+ﬁnfﬂr:_2_+.8ﬂ— 20 +§)A(9 ) g

Since A is increasing on a sufficiently small interval [0,a), we have for
sufficiently large n and s € (6", 6" "]

(1+6)

Bu(w) < (52 4 D).
In the limit @ — 1 and § — 0, we get the claim.

(ii) limsup,_.q TB(QT > 1 almost everywhere.
For 6 € (0,1), the sets

Ap = {Bgn — Bgns1 > (1 — VO)A(6")}

are independent and since Bgn — Bga+1 is Gaussian we have

2 du @ 2
P —u®/2 —a*/2
[An] = ./a € —\/2_ > 5 16

with a = (1 — VO)A(P") < Kn~* with some constants K and a < 1.
Therefore 3, P[An] = oo and by the second Borel-Cantelli lemma,

Bgn > (1 — VO)A(0™) + Bgn+1 (4.1)

for infinitely many n. Since — B is also Brownian motion, we know from (i)
that
—Bgn+1 < 2A(9“+1) (4.2)

for sufficiently large n. Using these two inequalities (4.1) and (4.2) and
A(0™F1) < 2V/BA(9™) for large enough n, we get

Bon > (1= VB)A(O™) — 4A(6™) > A(6™)(1 — VB — 4V)
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for infinitely many n and therefore

. . . Bt .
—— > —
llltnl(l)’lf 0 117rlnsup (9 ) >1-5V0.
The claim follows for 8 — 0. O

Remark. This statement shows also that B; changes sign infinitely often
for t — 0 and that Brownian motion is recurrent in one dimension. One
could show more, namely that the set {B; =0 } is a nonempty perfect set
with Hausdorff dimension 1/2 which is in particularly uncountable.

By time inversion, one gets the law of iterated logarithm near infinity:

Corollary 4.8.2.

=1]=1, P[hmlnf B =-1]=1.

P[lim sup — X0

By
t—oo A(t)

Proof. Since B, = tByt (with Bo = 0) is a Brownian motion, we have with
s=1/t

1 = limsup —— = limsup s

50 A() 50 A()

= lim su; i—— = limsu
TSP SR — RS gy

The other statement follows again by reflection. [l

Corollary 4.8.3. For d-dimensional Brownian motion, one has

Plimsup ——

B,
mSup =1]=1, P[hmlnf

= 1=?

Proof. Let e be a unit vector in R%. Then B - € is a 1-dimensional Brown-
ian motion since B; was defined as the product of d orthogonal Brownian
motions. From the previous theorem, we have

P =
[hl:ljalp A(t) =1]=1

Since B; - e < |By|, we know that the limsup is > 1. This is true for all
unit vectors and we can even get it simultaneously for a dense set {en }nen
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of unit vectors in the unit sphere. Assume the limsup is 1 + ¢ > 1. Then,
there exists e, such that

B, -
P[lim sup = n>qy s

t—0 A(t) - 5} =1

in contradiction to the law of iterated logarithm for Brownian motion.
Therefore, we have limsup = 1. By reflection symmetry, liminf = —1. O

Remark. It follows that in d dimensions, the set of limit points of B,/A(t)
for t — 0 is the entire unit ball {|v| < 1}.

4.9 The theorem of Dynkin-Hunt

Definition. Denote by I(k, n) the interval [’cz;nl, 2%) If T is a stopping time,
then T(™ denotes its discretisation

T(") (w) = Z 1I(k,n) (T(w))zﬁn
k=1

which is again a stopping time. Define also:
Ar+ ={A€ A | AN{T <t} e AVt }.

The next theorem tells that Brownian motion starts afresh at stopping
times.

Theorem 4.9.1 (Dynkin-Hunt). Let T be a stopping time for Brownian
motion, then B; = B;ir — Br is Brownian motion when conditioned to
{T < oo} and B, is independent of Ar+ when conditioned to {T < oc}.

Proof. Let A be the set {T' < 0o0}. The theorem says that for every function

f(Bt) = g(Bt+t,, Beytyy -y Bi4t,,)

with g € C(R™) )
Elf(Bi)1a] = Elf(By)] - PlA]

and that for every set C € Ap+
E[f(Bs)lanc] - P[A] = E[f(B)14] - P[ANC] .
This two statements are equivalent to the statement that for every C' € Ap+

E[f(Bt) - Lanc] = E[f(By)] - P[ANC].
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Let T be the discretisation of the stopping time T and 4, = {T™ < o}
as well as A, = {T™ = k/2"}. Using A = {T < oo}, P[UgZ; 4n,kNC] —
P[AN C] for n — oo, we compute

E[f(B)lanc] = nILII;OE[f(BT(n))lAnnC]

x>
= lim > E[f(Bij2n) 14, 4nC]

k=0
= lim iE[f(Bo)] PlAnNC)
k=0
= E[f(B nlLI&PG AnxNC]
= E[f(Bo)lanc] .

= E[f(Bo)]-P[ANC]
= E[f(B)]-P[ANC].

O

Remark. If T < oo almost everywhere, no conditioning is necessary and
B, .1 — Br is again Brownian motion.

Theorem 4.9.2 (Blumental’s zero-one law). For every set A € Ag+ we have
P[A] =0 or P[4] =

Proof Take the stopping time T which is identically 0. Now B = Byyr —

= B. By Dynkin-Hunt’s result, we know that B = B is independent of
BT+ = Ap+. Since every C € Ag+ is {Bs, s > 0} measurable, we know that
Ag+ is independent to itself. O

Remark. This zero-one law can be used to define regular points on the
boundary of a domain D € R%. Given a point y € §D. We say it is regular,
if P,[Tsp > 0] = 0 and irregular P,[T5p > 0] = 1. This definition turns
out to be equivalent to the classical definition in potential theory: a point
y € 6D is irregular if and only if there exists a barrier function f : N - R
in a neighborhood N of y. A barrier function is defined as a negative sub-

harmonic function on int(N N D) satisfying f(z) — 0 for £ — y within
D.

4.10 Self-intersection of Brownian motion

Our aim is to prove the following theorem:
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Theorem 4.10.1 (Self intersections of random walk). For d < 3, Brownian
motion has infinitely many self intersections with probability 1.

Remark. Kakutani, Dvoretsky and Erdoés have shown that for d > 3, there
are no self-intersections with probability 1. It is known that for d < 2, there
are infinitely many n—fold points and for d > 3, there are no triple points.

Proposition 4.10.2. Let K be a compact subset of R? and 7" the hitting time
of K with respect to Brownian motion starting at y. The hitting probability
h(y) = Ply+ B; € K,T < s < 0] is a harmonic function on R%\ K.

Proof. Let Ts be the hitting time of S5 = {|z — y| = é}. By the law of
iterated logarithm, we have T5 < co almost everywhere. By Dynkin-Hunt,
we know that B; = B, — B; is again Brownian motion.

If 4 is small enough, then y + B, ¢ K for t < Ts. The random variable
Br, € S5 has a uniform distribution on S5 because Brownian motion is
rotational symmetric. We have therefore

h(y) = Ply+B,€K,s> T
= Ply+Br, +BeK)]

= / h(y + z) dp(z) ,
Ss

where u is the normalized Lebesgue measure on Ss. This equality for small
enough ¢ is the definition of harmonicity. O

Proposition 4.10.3. Let K be a countable union of closed balls. Then
h(K,y) > 1fory — K.

Proof. (i) We show the claim first for one ball K = B,(z) and let R = |z—y|.
By Brownian scaling B; ~ ¢ - B; /c2- The hitting probability of K can only
be a function f(r/R) of r/R:
h(y, K)=Ply+B; € K,T<s] = Pley+ B,z € cK,Tk < s]
= Pley+ Byje2 € cK, Tek < s/c?)
= Pley+ Bs,Tex < §]
= h(cy,cK).
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We have to show therefore that f(z) — 1 as z — 1. By translation invari-
ance, we can fix y = yo = (1,0,...,0) and change K, which is a ball of
radius o around (—¢a,0,...). We have

h(yo, Ka) = f(a/(1 +a))
and take therefore the limit ¢ — oo
lim f(z) = lim h(yo, Ka) = h(yo,| J Ka)
= E[;‘gﬁ(Bs)l <-1]=1

because of the law of iterated logarithm.
(ii) Given y, — yo € K. Then yo € Ky for some ball Kj.

liminf A(y,, K) > lim h(yn, Ko) =1
n—o0

by (i). O

Definition. Let 1 be a probability measure on R3. Define the potential
theoretical energy of u as

1) = [ [ le=yl™ du(o) duto)
R3 JR3
Given a compact set K C R3, the capacity of K is defined as

inf  I(u)™!,
i)
where M(K) is the set of probability measures on K. A measure on K
minimizing the energy is called an equilibrium measure.

Remark. This definitions can be done in any dimension. In the case d =
2, one replaces |z — y|™! by log|r — y|~. In the case d > 3, one takes
|z — y|~(@=2). The capacity is for d = 2 defined as exp(—inf, I(x)) and for
d > 3 as (inf, I(u))~(@-2),

Definition. We say a measure u, on R? converges weakly to , if for all con-
tinuous functions f, [ f du, — J f du. The set of all probability measures
on a compact subset E of R? is known to be compact.

The next proposition is part of Frostman’s fundamental theorem of poten-
tial theory. For detailed proofs, we refer to [39, 80].

Proposition 4.10.4. For every compact set K C R?, there exists an equilib-
rium measure 4 on K and the equilibrium potential [ |z — y|~(4=2) du(y)
rsp. [log(|lz — y|™!) du(y) takes the value C(K)~! on the support K* of
L.
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Proof. (i) (Lower semicontinuity of energy) If u, converges to y, then

liminf I'{u,) > I(p) .

n—oo

(ii) (Existence of equilibrium measure) The existence of an equilibrium mea-
sure u follows from the compactness of the set of probability measures on
K and the lower semicontinuity of the energy since a lower semi-continuous
function takes a minimum on a compact space. Take a sequence p, such
that

I, inf  I(u).
(1 )_’uelﬁ(x) (1)

Then pn has an accumulation point 4 and I(u) < inf,epr(x) I(p).

(iii) (Value of capacity) If the potential ¢(z) belonging to y is constant on
K, then it must take the value C(K)~! since :

/ #(z) du(z) = I() .

(iv) (Constancy of capacity) Assume the potential is not constant C(K)~!
on K*. By constructing a new measure on K* one shows then that one can
strictly decrease the energy. This is physically evident if we think of ¢ as
the potential of a charge distribution x on the set K. O

Corollary 4.10.5. Let u be the equilibrium distribution on K. Then
My, K) = ¢, - C(K)

and therefore h(y, K) > C(K) - infyek |z — y| L.

Proof. Assume first K is a countable union of balls. According to propesi-
tion (4.10.2) and proposition (4.10.3), both functions h and ¢,, - C(K) are
harmonic, zero at co and equal to 1 on §(K’). They must therefore be equal.
For a general compact set K, let {y,} be a dense set in K and let K, =
U, Be(yn). One can pass to the limit € — 0. Both h(y, K.) — h(y, K) and
infzek, |z — y|™! — infrex |z — y|7! are clear. The statement C(K.) —
C(K) follows from the upper semicontinuity of the capacity: if Gy, is a se-
quence of open sets with NG,, = E, then C(G,) — C(E).

The upper semicontinuity of the capacity follows from the lower semicon-
tinuity of the energy. O
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Proposition 4.10.6. Assume, the dimension d = 3. For any interval J =
[a,b], the set
Bj(w) = {B:(w) | t € [a,b]}

has positive capacity for almost all w.

Proof. We have to find a probability measure p(w) on Br(w) such that its
energy I(u(w)) is finite almost everywhere. Define such a measure by

=l{se[a,b]lBseA}

du(A) -

Then

1) = [ [12 =y duwauty) = / b / (b= ) |Be - Bl dst

To see the claim we have to show that this is finite almost everywhere, we
integrate over ! which is by Fubini

b b
E[I(u)] = / / (b= a)~"E[|Bs — B|™") dsat

which is finite since B; — B; has the same distribt;tion as /s —tB; by
Brownian scaling and since E[|Bi|™] = [ |z|"te~I#I"/2 dz < co in dimen-

siond22andf:f:\/s—tdsdt<oo. O
Now we prove the theorem

Proof. We have only to show that in the case d = 3. Because Brownian
motion projected to the plane is two dimensional Brownian and to the line
is one dimensional Brownian motion, the result in smaller dimensions fol-
low.

(i) a= P[Ute[o,l],szz B; = Bs| > 0.

Proof. Let K be the set Ute[o,l] B;. We know that it has positive capacity
almost everywhere and that therefore h(Bs, K) > 0 almost everywhere.
But h(Bs,K) = a since Bsiz2 — Bs is Brownian motion independent of
B;,0<s< 1.

(il) ar = PlUycjo.1],0<7 Bt = Bs] > 0 for some T > 0. Proof. Clear since
ar — a for T — oo.
(iii) Proof of the claim. Define the random variables X» = 1c, with

Cn = {w | By = Bs, forsomet € [nT,nT +1],s € [nT +2,(n+1)T) }.

They are independent and by the strong law of large numbers Y, X, = 00
almost everywhere. a
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Corollary 4.10.7. Any point B, (w) is an accumulation point of self-crossings
of {Bt(w)}tz().

Proof. Again, we have only to treat the three dimensional case. Let T > 0
be such that
ar=P[ |J B:=B]>0
t€[0,1],2<T

in the proof of the theorem. By scaling,

P[B; =B, |t€[0,8],s € [28,TH]]
is independent of 5. We have thus self-intersections of the random walk in
any interval [0,5] and by translation in any interval [a, ]. a
4.11 Recurrence of Brownian motion

We show in this section that like its discrete brother, the random walk,
Brownian motion is transient in dimensions d > 3 and recurrent in dimen-
sions d < 2.

Lemma 4.11.1. Let T be a finite stopping time and Ry (w) be a rotation in
R? which turns Br(w) onto the first coordinate axis

Rr(w)Br(w) = (|Br(w)],0,...0) .

Then B; = Rr(B+1 — Br) is again Brownian motion.

Proof. By the Dynkin-Hunt theorem, B, = B, — Br is Brownian motion
and independent of Ar. By checking the definitions of Brownian motion,
it follows that if B is Brownian motion, also R(z)B; is Brownian motion,
if R(z) is a random rotation on R¢ independent of B;. Since Rr is Ar
measurable and Bt is independent of A7, the claim follows. O

Lemma 4.11.2. Let K, be the ball of radius r centered at 0 € R® with
d > 3. We have for y ¢ K,

h(y, Kr) = (r/ly))?~2 .
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Proof. Both h(y, K,) and (r/|y|)%~2 are harmonic functions which are 1 at
§K, and zero at infinity. They are the same. O

Theorem 4.11.3 (Escape of Brownian motion in three dimensions). For
d > 3, we have lim;_, | Bt| = oo almost surely.

Proof. Define a sequence of stopping times T, by
T, = inf{s > 0| |Bs| = 2"},

which is finite almost everywhere because of the law of iterated logarithm.
We know from the lemma (4.11.1) that

= Rr, (Bt+T, — Br,)

is a copy of Brownian motion. Clearly also |Br,| = 2".

We have B, € K,(0) = {|z| < r} for some s > T, if and only if B; €
(27,0...,0) + K,(0) for some ¢t > 0.

Therefore using the previous lemma

P[B, € K,(0);s > T] = P[B, € (2",0...,0) + K-(0);t > 0] = (2%)'1-2

which implies in the case 72~ < 1 by the Borel-Cantelli lemma that for
almost all w, Bs(w) > r for s > T,. Since T, is finite almost everywhere,
we get liminf, | Bs| > r. Since r is arbitrary, the claim follows. 0

Brownian motion is recurrent in dimensions d < 2. In the case d = 1, this
follows readily from the law of iterated logarithm. First a lemma

Lemma 4.11.4. In dimensions d = 2, almost every path of Brownian motion
hits a ball K. if 7 > 0: one has h(y,K) = 1.

Proof. We know that h(y) = h(y, K) is harmonic and equal to 1 on éK. It
is also rotational invariant and therefore h(y) = a+blog|y|. Since h € [0, 1]
we have h(y) =a andso a = 1. O

Theorem 4.11.5 (Recurrence of Brownian motion in 1 or 2 dimensions). Let
d < 2 and S be an open nonempty set in R%. Then the Lebesgue measure
of {t| B; € S} is infinite.
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Proof. 1t suffices to take S = K, (z9), a ball of radius r around z,. Since
by the previous lemma, Brownian motion hits every ball almost surely, we
can assume that £y = 0 and by scaling that r = 1.

Define inductively a sequence of hitting or leaving times Tn, Sn of the
annulus {1/2 < |z| < 2}, where Ty = inf{t | |B;| = 2} and

S, = inf{t>T,||By|=1/2}
T, = inf{t>S.1||B,=2}.

These are finite stopping times. The Dynkin-Hunt theorem shows that S,, —
T, and T, — S, are two mutually independent families of IID random
variables. The Lebesgue measures Y,, = |I,,| of the time intervals

I’n:{tl'Btlslv TnStSTn+l}7

are independent random variables. Therefore, also X,, = min(1,Y,,) are
independent bounded IID random variables. By the law of large numbers,
2_n Xn = 0o which implies ", Y;, = 0o and the claim follows from

{t €[0,00) [ [Be| <1} 2D Tn.

O

Remark. Brownian motion in R? can be defined as a diffusion on R? with
generator A/2, where A is the Laplacian on R?. A generalization of Brow-
nian motion to manifolds can be done using the diffusion processes with
respect to the Laplace-Beltrami operator. Like this, one can define Brown-
ian motion on the torus or on the sphere for example. See [57].

4.12 Feynman-Kac formula

In quantum mechanics, the Schrodinger equation iht = Hu defines the
evolution of the wave function u(t) = e~*#/%4(0) in a Hilbert space . The
operator H is the Hamiltonian of the system. We assume, it is a Schrédinger
operator H = Hy + V, where Hy = —A/2 is the Hamiltonian of a free
particle and V : R¢ — R is the potential. The free operator Hy already is
not defined on the whole Hilbert space H = L?(R%) and one restricts H to
a vector space D(H) called domain containing the in H dense set C§°(R%)
of all smooth functions which are zero at infinity. Define

D(A*) = {u € H| v+ (Av,u) is a bounded linear functional on D(A)}.

If u € D(A*), then there exists a unique function w = A*u € H such that
(Av,u) = (v,w) for all u € D(A). This defines the adjoint A* of A with
domain D(A*).

Definition. A linear operator A : D(A) C H — 'H is called symmetric if
(Au,v) = (u, Av) for all u,v € D(A) and self-adjoint, if it is symmetric and
D(A) = D(A™).



4.12. Feynman-Kac formula 231

Definition. A sequence of bounded linear operators A, converges strongly
to A, if Apu — Au for all u € H. One writes A = s — limy, oo An-

Define e4 = 1+ A + A2/2! + A3/3! + ---. We will use the fact that a
self-adjoint operator defines a one parameter family of unitary operators
¢ s eit4 which is strongly continuous. Moreover, e"*# leaves the domain
D(A) of A invariant. For more details, see 81, 7].

Theorem 4.12.1 (Trotter product formula). Given self-adjoint operators
A, B defined on D(A), D(B) C H. Assume A + B is self-adjoint on D =
D(A) N D(B), then

eit(A+B) =s— lim (eitA/neitB/n)n .
n—oo

If A, B are bounded from below, then

e—t(A+B) =5 — lim (e—tA/ne—tB/n)n
n—o00

Proof. Define
St — eit(A+B),‘/t - eitA,Wt — €itB, Ut — ‘/tWt

and v; = Syv for v € D. Because A+ B is self-adjoint on D, one has v; € D.
Use a telescopic sum to estimate

n—1
1S = UZoll = 13U (Sem = Uyyn) Sy 0l
=0

IA

7 sup H(St/n - Ut/n)”s“ .
0<s<t

We have to show that this goes to zero for n — oo. Given u € D =
D(A)Nn D(B),

Ss—1 s— 1
lm u=1i(A+ B)u = lim u U
s—0 s—0 S
so that for each u € D
Tim - (1S4 — UignJull = 0. 43)
The linear space D with norm |||u||| = ||(A + B)u|| + ||u|| is a Banach

space since A + B is self-adjoint on D and therefore closed. We have a
bounded family {n(S¢/n — U: /n)}nen of bounded operators from D to H.
The principle of uniform boundedness states that

In(Se/n = Ugm)ull < C - llulll -
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An ¢/3 argument shows that the limit (4.3) exists uniformly on compact
subsets of D and especially on {vs}sepo,y € D and so NSUPy< <t [|(Seym —
Ut/n)vs|| = 0. The second statement is proved in exactly the same way. O

Remark. Trotter’s product formula generalizes the Lie product formula,
. A B
Am (exp(-) exp(—))" = exp(A + B)

for finite dimensional matrices A, B, which is a special case.

Corollary 4.12.2. (Feynman 1948) Assume H = Hy + V is self-adjoint on
D(H). Then

. 2wt .
e Hy(zo) = lim (ﬂ)_d/z/ e’S"(“’zl’”"""”"’t)u(xn) dzy...dz,
n—oo N (Rd)n

where

t =1 i — Ti—
So(ananent) = 1Y 2B Iy
=1

<33

Proof. (Nelson) From % = —iHgu, we get by Fourier transform 4 = ZJ%E
which gives (k) = exp(ij%,mt)ﬁo (k) and by inverse Fourier transform

. . 2
e Hoy(z) = wy(z) = (27rz't)_d/2/ e u(y) dy .
R4

The Trotter product formula,

e—it(Ho'{-V) =g — hm (eitHo/neitV/n)n
n—0oo

gives now the claim. a

Remark. We did not specify the set of potentials, for which Hy + V can be
made self-adjoint. For example, V € C§°(R¥) is enough or V ¢ LER¥ N
L*°(R?) in three dimensions.

We have seen in the above proof that e~#Ho has the integral kernel B, (z,y) =
[z—y|2
(2mit)~%/2¢" 5"~ The same Fourier calculation shows that e~t#0 has the

integral kernel
2
Pi(z,y) = (2nt)~%/2e~ =5t |
where g; is the density of a Gaussian random variable with variance t.

Note that even if u € L?(R?) is only defined almost everywhere, the func-
tion u(z) = e *Hou(z) = [ P(z — y)u(y)dy is continuous and defined
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everywhere.

Lemma 4.12.3. Given fi1,..., fn € L°(R¥)NLA(R%) and 0 < 51 < -+ < $p.
Then

(Mo i -0 L)0) = [ fi(Ba)-+ fo(Buv) 4B,

where t; = s1,t; = $; — 8;_1,%7 > 2 and the f; on the left hand side are
understood as multiplication operators on L2(R?).

Proof. Since B,,, Bs, — Bs,,...Bs, — Bs,_, are mutually independent
Gaussian random variables of variance t1,ts,...,t,, their joint distribu-
tion is

Pt1 (07y1)Pt2 (07y2) v Pt" (0, yn) dy

which is after a change of variables y3 = z1,y: = T, — Ti1
P, (0,z1) P, (z1,22) ... Pi, (Tn-1,Zn) dz .

Therefore,

/fl(le)"'fn(Bsn) dB
/(Rd)n Pt1 (O, yl).Pt2 (0, yg) cee Pt,, (O,yn)fl(yl) e fn(yn) dy

_ /(Rd)n Py (0,21) Py, (21, 73) . .. Py, (Tne1, 20) f1(21) - - - fu(2n) det
= (e7tHof...etHof)(0).
O

Denote by dB the Wiener measure on C([0,00),R?%) and with dz the
Lebesgue measure on R%. We define also an extended Wiener measure
dW = dz x dB on C([0,00), R?) on all paths s — W, = = + B, starting at
z € R4,

Corollary 4.12.4. Given fo, f1,...,fn € L®(R?%) N L*(R?) and 0 < 51 <
+++ < 8p. Then

/ foWeo) -+ fu(Ws,) dW = (fo,e 01Hofy .. eminflof )
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Proof. (i) Case sp = 0. From the above lemma, we have after the dB
integration that

I

[ o) g, aw / fol)e 80 fy(z) - e~tn o £, (2) da

= 0 tlHOf —thofn) )

(ii) In the case so > 0 we have from (i) and the dominated convergence
theorem

/ fO(WSO)"‘fn(WSn) aw

= lim Yiz1<r} (Wo)
R

R—o00

fO(WSO)"'fn(Wsn) aw
= lim (foe™ 1, cpy, e 0 fy e 0 £ ()
= (fo,efofy.eminHof ),
0

We prove now the Feynman-Kac formula for Schrédinger operators of the
form H = Hy+V with V € C3°(R?). Because V is continuous, the integral
fo (Ws(w)) ds can be taken for each w as a limit of Riemann sums and

fo (W,) ds certainly is a random variable.

Theorem 4.12.5 (Feynman-Kac formula). Given H = Hy 4+ V with V €
C&°(R?), then

(f,etHg) = / F(Wo)g(Wi)e™ Js VW ds gy |

Proof. (Nelson) By the Trotter product formula

(f,e™g) = lim (f, (e7tHo/me~tV/m)ng)
n—co

so that by corollary (4.12.4)

n—1

(f,etHg) = 11m /f Wo)g(Wy) exp( ——ZV(WU/”)) dw (44)

7=0

and since s — W is continuous, we have almost everywhere

n—1 t

t

EZV(WW,,) —»/O V(W,) ds .
Jj=0
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The integrand on the right hand side of (4.4) is dominated by
|f(Wo)| - lg(Wy)| - eIVl
which is in L!(dW) because again by corollary (4.12.4),

/ FWo)| - lg(Wa)| dW = (If],e~*Folgl) < oo .

The dominated convergence theorem leads us now to the claim. O

Remark. The formula can be extended to larger classes of potentials like
potentials V which are locally in L!. The selfadjointness, which needed in
Trotter’s product formula, is assured if V € L? N L? with p > d/2. Also
Trotter’s product formula allows further generalizations [93, 31].

Why is the Feynman-Kac formula useful?

e One can use Brownian motion to stlidy Schrodinger semigroups. It al-
lows for example to give an easy proof of the ArcSin-law for Brownian
motion.

e One can treat operators with magnetic fields in a unified way.

e Functional integration is a way of quantization which generalizes to
more situations.

e It is useful to study ground states and ground state energies under
perturbations.

e One can study the classical limit 2 — 0.

4.13 The quantum mechanical oscillator

The one-dimensional Schrodinger operator

is the Hamiltonian of the quantum mechanical oscillator. It is a quantum
mechanical system which can be solved explicitly like its classical analog,
which has the Hamiltonian H(z,p) = 3p? + 322 — 1.

One can write
H=A4A"-1=AA,

with
1 d 1 d

The first order operator A* is also called particle creation operator and A,
the particle annihilation operator. The space C§° of smooth functions of
compact support is dense in L%(R). Because for all u,v € C§°(R)

(Au,v) = (u, A™v)

AY =
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the two operators are adjoint to each other. The vector

is a unit vector because 23 is the density of a N(0,1/+/2) distributed ran-
dom variable. Because AQy = 0, it is an eigenvector of H = A*A with
eigenvalue 1/2. It is called the ground state or vacuum state describing the
system with no particle. Define inductively the n-particle states
Q= 1 A*Q
n - % n-1

by creating an additional particle from the (n — 1)-particle state Q,_; .

Figure. The first Hermit func-
tions Q. They are unit vectors
in L(R) defined by

Hi (z)wo ()
Vvorn!

where Hy,(z) are Hermite poly-
nomia]s, Ho(x) == 1,H1(.’17) =
2z, Hy(z) = 422 — 2, Ha(z) =
8z3 — 12z,.. ..

Q(z) =

Theorem 4.13.1 (Quantum mechanical oscillator). The following properties
hold:
a) The functions are orthonormal (Qn, Q) = 8, .
b) AQ, = \/ﬁQn_l,A*Qn =+/n+ 1Qn+1.
~ ¢) (n— %) are the eigenvalues of H

1 1
H=(A"A~ )% = (n— )%

d) The functions £, form a basis in L?(R).

Proof. Denote by [A, B] = AB — BA the commutator of two operators A
and B. We check first by induction the formula

[A4, (A7) =n- (A"
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For n = 1, this means [A4, A*] = 1. The induction step is
[4,(A)" = [A,(4")" 1A + (A)" A4, A7]
— (n _ 1)(A*)n—1 + (A*)n—l — n(A*)n-—l .
a) Also
((A*)"Q, (A")" Q) = nldmn -

can be proven by induction. For n = 0 it follows from the fact that Qo is
normalized. The induction step uses [4, (A*)"] =n-(A*)""! and AQp = 0:

(A", (A" Q) = (A(A")"Q(A")™ Q)
([A, (A*)"]Q0(A*)™ )
— n((A*)"_IQO, (A*)m—lﬂo) .

If n < m, then we get from this 0 after n steps, while in the case n = m,
we obtain ((A4%)*Q, (4*)"Qp) = n - ((A*)""1Q, (A*)*"'Qy), which is by
induction n(n — 1)10p_1,n-1 = nl.
b) A*Q, = v/n+1:-Qny1 is the definition of (2.

1 Ey
vn! V!

¢) This follows from b) and the definition Q, = \/LEA*Q,,_I.

AQ, =

A(A*)nﬂ() = TLQO = \/ﬁgn_l .

d) Part a) shows that {Q,}72, it is an orthonormal set in L?(R). In order
to show that they span L%(R), we have to verify that they span the dense
set

S={feCyC®)| ™™ (z) = 0,]z| — 00,Ym,n €N}
called the Schwarz space. The reason is that by the Hahn-Banach theorem,
a function f must be zero in L2(R) if it is orthogonal to a dense set. So,
lets assume (f,§2,) = O for all n. Because A* + A = V2z
0= Vni2® (f,2) = (f,(4")") = (£, (4" + 4)"Q) = 2"/* (f,2" %)

we have

i) = [ > F@) @) do

= (fv QOeikz) = (f’ Z (Zk;:;)n QO)
n>0
= ¥ B pamag) =0

n>0

and so fQo = 0. Since Qy(z) is positive for all z, we must have f = 0. This
finishes the proof that we have a complete basis. a
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Remark. This gives a complete solution to the quantum mechanical har-
monic oscillator. With the eigenvalues {\, = n—1/2}22, and the complete
set of eigenvectors {2, one can solve the Schrédinger equation

d
iha?u = Hu
by writing the function u(z) = Y 72 u,Qn(z) as a sum of eigenfuctions,
where un, = (u, ). The solution of the Schrédinger equation is

o0
u(t,z) = Z un M1t (7).

n=0

Remark. The formalism of particle creation and annihilation operators
can be extended to some potentials of the form U(z) = ¢?(z) — ¢’ (z) the
operator H = —D?/2 + U/2 can then be written as H = A* A, where

1 d 1 d

E(‘I(ﬂv) - E)’ A= 7‘-2—(‘1(9”) + %) .

A =
The oscillator is the special case ¢(z) = . See [12]. The Bécklund transfor-
mation H = A*A > H = AA* is in the case of the harmonic oscillator the
map H — H + 1 has the effect that it replaces U with U = U — 82 log Q,
where () is the lowest eigenvalue. The new operator H has the same spec-
trum as H except that the lowest eigenvalue is removed. This procedure
can be reversed and to create ”soliton potentials” out of the vacuum. It
is also natural to use the language of super-symmetry as introduced by
Witten: take two copies H s @ H, of the Hilbert space where ” f7 stands for
Fermion and ”b” for Boson. With

0 A 1 0
=[5 V][0 51

one can write H® H = Q2, P2 =1, QP + PQ = 0 and one says (H, P,Q)
has super-symmetry. The operator Q is also called a Dirac operator. A
super-symmetric system has the property that nonzero eigenvalues have
the same number of bosonic and fermionic eigenstates. This implies that A
has the same spectrum as H except that lowest eigenvalue can disappear.

Remark. In quantum field theory, there exists a process called canonical
quantization, where a quantum mechanical system is extended to a quan-
tum field. Particle annihilation and creation operators play an important
role.

4.14 Feynman-Kac for the oscillator

We want to treat perturbations L = Ly 4+ V of the harmonic oscillator
Lo with an similar Feynman-Kac formula. The calculation of the integral
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kernel p;(z,y) of e~ Lo satisfying

e"thof)(z) = (T,
(e f) () /R Pl 9) () dy

is slightly more involved than in the case of the free Laplacian. Let £y be
the ground state of Ly as in the last section.

Lemma 4.14.1. Given fo, f1,...,fn € L®(R) and —00 < 59 < 81 < --+ <
Sn < 00. Then

(Qo, foe 80 f1 - e o £,00) = /fO(Qso) e In(@s,) dQ

where tg = sg,t; = 8; — 851, > 1.

Proof. The Trotter product formula for Ly = Hy + U gives

(Qo, foe™t Lo fy - emtnlo £, Q)
— lim (QO, fo(e—tlHO/mle—tlU/m1)m1 fl . e—thoanO)

m=(mi,...,Mn),M;—00

/fO(-TO) o fo(@n) dGm(z,y)

and G, is a measure. Since e~*#0 has a Gaussian kernel and e~V is a
multiple of a Gaussian density and integrals are Gaussian, the measure dG,,,
is Gaussian converging to a Gaussian measure dG. Since Lo(zp) = z{p
and (zQg,2Q) = 1/2 we have

1
/ zi; dG = (@S, €™ Loaflg) = ze (5=

which shows that dG is the joint probability distribution of Qs,,...Qs, -
The claim follows. O

Theorem 4.14.2 (Mehler formula). The kernel p;(z,y) of Ly is given by the
Mehler formula

(2 +y2) (1 +e72) — 4a;ye‘t>

(x,y) = ! ex
DT, y) = 02 p 902

with 02 = (1 —e™2).
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Proof. We have

(fretEog) = / F@)% 1)9()%5 (z) dG(z, y) = / f@pe(z,y) d

with the Gaussian measure dG having covariance

—t
A=y [ L J .
We get Mehler’s formula by inverting this matrix and using that the density
i (2m) det(A) 1/ 2e~((@¥).A(zw) |
O

Definition. Let dQ be the Wiener measure on C(R) belonging to the os-
cillator process Q.

Theorem 4.14.3 (Feynman-Kac for oscillator process). Given L = Lo+ V
with V € C§°(R), then

(0,67 %08) = [ F(Qolg(@ue V@0 ag

for all f,g € L%(R, Q2dx).

Proof. By the Trotter product formula
(fQ0, €7 9%) = lim (fQ, (e~*Eo/e™tV/m)gQy)

so that
(0,e708%) = lim_ [ F(Qu)o(@0)exp ——ZV(Qm/n) )dQ . (45)

and since @ is continuous, we have almost everywhere

¢ n—1 t
R V@)~ [ V@) ds

The integrand on the right hand side of (4.5) is dominated by

1£(Qo)]|g(Qy)|ettVIlee
which is in L'(dQ) since

[ 1£@0)l9(@0)1 4@ = @0l =*=ig) < oo

The dominated convergence theorem gives the claim. O
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4.15 Neighborhood of Brownian motion

The Feynman-Kac formula can be used to understand the Dirichlet Lapla-
cian of a domain D C R%. For more details, see [93].

Example. Let D be an open set in R? such that the Lebesgue measure |D| is
finite and the Lebesgue measure of the boundary |6 D] is zero. Denote by Hp
the Dirichlet Laplacian —A /2. Denote by kp(E) the number of eigenvalues
of Hp below E. This function is also called the integrated density of states.
Denote with K the unit ball in R? and with |K,| = Vol(K4) = 7¥/2T'(§ +
1)~ its volume. Weyl’s formula describes the asymptotic behavior of kp(E)
for large E:
o ko(B) _ |Kdl-ID|
E—oc Ed/2 2d/2ﬂ'd
Tt shows that one can read off the volume of D from the spectrum of the
Laplacian.

Example. Put n ice balls K »,1 < j < n of radius r,, into a glass of water
so that n-r, = a. In order to know, how good this ice cools the water it is
good to know the lowest eigenvalue E; of the Dirichlet Laplacian Hp since
the motion of the temperature distribution u by the heat equation @ = Hpu
is dominated by e*F:. This motivates to compute the lowest eigenvalue of
the domain D \ U;.l:l K ». This can be done exactly in the limit n — oo
and when ice Kj, is randomly distributed in the glass. Mathematically,
this is described as follows:

Let D be an open bounded domain in R%. Given a sequence z = (z1, Z2, ... )
which is an element in DN and a sequence of radii 71,79, ..., define

Dn=D\U{|x—xi|§rn}.

i=1

This is the domain D with n points balls K ,, with center z1, ...z, and ra-
dius r, removed. Let H(z,n) be the Dirichlet Laplacian on D, and Ex(z,n)
the k-th eigenvalue of H(z,n) which are random variable E¢(n) in z, if DN
is equipped with the product Lebesgue measure. One can show that in the
case nr, — «

Ex(n) — Ex(0) + 27a|D|™!

in probability. Random impurities produce a constant shift in the spectrum.
For the physical system with the crushed ice, where the crushing makes
nr, — 00, there is much better cooling as one might expect.

Definition. Let W;(t) be the set
{x € R?| |z — By(w)| <6, for some s € [0,¢]} .

It is of course dependent on w and just a §-neighborhood of the Brownian
path By ¢ (w). This set is called Wiener sausage and one is interested in the
expected volume |W;(t)| of this set as § — 0. We will look at this problem
a bit more closely in the rest of this section.
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Figure. A sample of Wiener
sausage in the plane d = 2. A
finite path of Brownian motion
with its neighborhood Ws.

Lets first prove a lemma, which relates the Dirichlet Laplacian Hp = —A/2
on D with Brownian motion.

Lemma 4.15.1. Let D be a bounded domain in R? containing 0 and
pp(z,y,t), the integral kernel of e~*#, where H is the Dirichlet Laplacian
on D. Then

E[B;€ D;0<s<t]=1- /pp((]..!:..".) dx .

Proof. (i) It is known that the Dirichlet Laplacian can be approximated in
the strong resolvent sense by operators Hy + AV, where V = 1pe is the
characteristic function of the exterior D¢ of D. This means that

(Ho+X-V)u— (Hp - z) " 'u,A > o0

for z outside [0,00) and all u € C=(RY).

(ii) Since Brownian paths are continuous, we have _frf V(Bs) ds > 0 if and
only if B, € C° for some s € [0,t]. We get therefore

t
e~ Mg V(B ds _, 1(5,eD¢ )

point wise almost everywhere.

Let u, be a sequence in C%° converging point wise to 1. We get with the
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dominated convergence theorem, using (i) and (ii) and Feynman-Kac

E[B,€ D%0<s<t] = lim E[u,(Bs)eD%50<s< t]

n—00

= lim lim E[e‘AfotV(B“) 45y, (By)]

n—00 A—00

= lim lim e tHo+3Vigy, (0)

n—00 A—oo

= lim e Py, (0)

n—oo

= lim [ po(0,2,t)un(0) dz = / pp(0,7,t) dz

n-=>00

a

Theorem 4.15.2 (Spitzer). In three dimensions d = 3,

E[[Ws(t)|] = 2ndt + 46%V/2rt + %7553 .

Proof. Using Brownian scaling,
E(Wxs(320)]] = E[{lz - Bs| < 25,0 < s < Mt}]
BB cs0gs=s <)

- E[|{|§ — Bs| <5,0< 5 < t}]
= /\3 . E[IWa(t)H

so that one assume without loss of generality that § = 1: knowing E[[W1(¢)|],
we get the general case with the formula E[|Wj5(t)|] = 6° - E[[W1(8 —28)]).

Let K be the closed unit ball in R?. Define the hitting probability
f(z,t) =Plz+ B, € K;0 < s < t].
We have
E[W1 ()] / f(z,t) dx .
Proof.

Bl = [ [Pl e watt) dz an

= //P[Bs-weK;OSSSt]dde

//P[BS—IEK;Ogsgt]dBd:c

= /f(:c,t) dr
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The hitting probability is radially symmetric and can be computed explic-
itly in terms of r = |z}: for |z| > 1, one has

2 oo {=l+z— 2
f(z,t) = / S
rv2nt Jo

Proof. The kernel of et satisfies the heat equation
atp(x7 0’ t) = (A/2)p(1‘, Oa t)

inside D. From the previous lemma follows that f = (A/2)f, so that the
function g(r, t) = rf(z,t) satisfies g = 5(—2%5 g(r,t) with boundary condition
g(r,0) =0, g(1,t) = 1. We compute

f(z,t) dz = 2nt + 4V 2rt

[]>1

and flml<1 f(z,t) dz = 4r/3 so that

E[|W1(t)] = 27t + 4V2rt + 47/3 .

Corollary 4.15.3. In three dimensions, one has:
1
lim <E[[W5(t)]] = 27t

and 1
Jlim = E[Ws(0)] = 25

Proof. The proof follows immediately from Spitzer’s theorem (4.15.2). O

Remark. If Brownian motion were one-dimensional, then 6~ 2E[|Ws(t)]]
would stay bounded as § — 0. The corollary shows that the Wiener sausage
is quite ”fat”. Brownian motion is rather ”two-dimensional”.

Remark. Kesten, Spitzer and Wightman have got stronger results. It is
even true that lims_o |W;s(t)|/t = 276 and lim,, |W5(t)|/t = 278 for
almost all paths.
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4.16 The Ito integral for Brownian motion

We start now to develop stochastic integration first for Brownian motion
and then more generally for continuous martingales. Lets start with a mo-
tivation. We know by theorem (4.2.5) that almost all paths of Brownian
motion are not differentiable. The usual Lebesgue-Stieltjes integral

/t f(Bs)Bs ds
0

can therefore not be defined. We are first going to see, how a stochas-
tic integral can still be constructed. Actually, we were already dealing
with a special case of stochastic integrals, namely with Wiener integrals
fg f(B,) dBs, where f is a function on C([0, o0}, R%) which can contain for

example fOt V(B,) ds as in the Feynman-Kac formula. But the result of this
integral was a number while the stochastic integral, we are going to define,
will be a random variable.

Definition. Let B; be the one-dimensional Brownian motion process and
let f be a function f : R — R. Define for n € N the random variable

on on
In(f) = Y F(Bim-1)2-»)(Bma=» = Bm-12-») =t Y Jnm(f) -
m=1 N m=1
We will use later for Jy,.(f) also the notation f(Bi,,_,)0nBt,,, where
5nBt = Bt - Bt_2—n.

Remark. We have earlier defined the discrete stochastic integral for a pre-
visible process C and a martingale X

m=1

If we want to take for C a function of X, then we have to take Cr, =
f(Xm_1). This is the reason, why we have to take the differentials 6, B:,,
to "stick out into future”.

The stochastic integral is a limit of discrete stochastic integrals:

Lemma 4.16.1. If f € C*(R) such that f, f’ are bounded on R, then J,(f)
converges in £2 to a random variable

1
/ f(By)dB = lim J,
0

n—oo
satisfying

1 1
I /0 f(B.) dB|Z = E[ /0 F(B.)? ds]
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Proof. (i) For i # j we have E[J,, ;(f)Jn ;(f)] = 0.

Proof. For j > i, there is a factor Bjp-» — B(j_1)2-n of Jn i(f)Jn,;(f) inde-
pendent of the rest of J, ;(f)Jn,;(f) and the claim follows from E[Bjg-» —
B(j—l)Z_"'] = O

(i) E[Jn,m(f)z] = E[f(B(m—l)z-")2]2*n'
Proof. f(B(m-1)/2») is independent of (Bpg-n — B(n_1)2-)> which has
expectation 277, '

(iii) From (i7) follows
2"
1n(llz = D~ E[f(Bm-1y2-=)427" .
m=1
(iv) The claim: J,, converges in £2.

Since f € C', there exists C = ||f'||%, and this gives |f(z) — f(y)|? <
C |z ~yl?. We get

“Jn-f-l (f) - Jn(f)”g

2" -1
= Z E[(f(B(2m+1)2—("+1)) - f(B(2m)2—(n+1)))2]2_(n+1)
m=1
2" -1
< C Z E[(B(2m+1)2—(n+1) - B(zm)z_(n+1))2]2~(n+l)
m=1
= C . 2—7"_2 ,

where the last equality followed from the fact that E[(Bom+1)2-t+n —
B(2m)2_(n+1>)2] = 27" since B is Gaussian. We see that J, is a Cauchy
sequence in £2 and has therefore a limit.

(v) The claim || f; f(B,) dB|3 = E[f; f(B,)? ds].

Proof. Since 3, f(B(m-1)2-»)?2"™ converges point wise to fol f(Bs)? ds,
(which exists because f and B, are continuous), and is dominated by || f||2,,
the claim follows since J, converges in £2. a

We can extend the integral to functions f, which are locally L! and bounded

near 0. We write L? (R) for functions f which are in L?(I) when restricted

to any finite interval I on the real line.

Corollary 4.16.2. fol f(B,) dB exists as a £? random variable for f €
L} (R) N L®(—¢,¢) and any € > 0.

loc
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Proof. (i) If f € L} (R) N L>(—¢,¢€) for some € > 0, then

! 2 _ ' Lx)ze_zz/%
E[/O f(Bs) ds]-—/0 /R\/Er_s_ drds <oo.

(i) If f € L}, (R) N L°°(—¢,€), then for almost every B(w), the limit

loc
1

lim 1[—a,a](BS)f(Bs)2 ds

a-—+00 0
exists point wise and is finite.
Proof. B; is continuous for almost all w so that 1{_, 4)(Bs)f(B) is indepen-
dent of a for large a. The integral E[fo1 1{—q,q)(Bs)f(Bs)? ds] is bounded
by E[f(B,)? ds] < o0 by (i).

(iii) The claim.

Proof. Assume f € L} (R)NL>®(—¢,¢). Given f, € C'(R) with 1{_ o fn —
f in L%(R).

By the dominated convergence theorem, we have

Ju-ads®ds— [1-adsB.) dB

in £2. Since by (ii), the £> bound is independent of a, we can also pass to
the limit a — oo. O

Definition. This integral is called an Ito integral. Having the one-dimensional
integral allows also to set up the integral in higher dimensions: with Brow-
nian motion in R¢ and f € L} (R?) define the integral fol f(Bs) dBs
component wise.

Lemma 4.16.3. For n — o0,

211 . 271.
ZJM(l)2 = Z(Bj/zn ~Bj_1yjen)t — 1.
j=1 j=1

Proof. By definition of Brownian motion, we know that for fixed n, J, ;
are N(0,27")-distributed random variables and so

2"1
E[Z Jn,](1)2] - 2" . Var[B]-/gn bt B(j-—l)/Z"] = 2”2—71 =1.
j=1

Now, X; = 2™J, ; are IID N(0, 1)-distributed random variables so that by
the law of large numbers

1

o Y X;-1

for n — oo. O
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The formal rules of integration do not hold for this integral. We have for
example in one dimension:

! 1 1
| BeaB=Sm-1# B -5,
0

Proof. Define

2"
Ji = ) f(Bim-1y2-)(Bra-n — Bm-1)2-+) ,
m=1

2’"
J5 = ) f(Bmz-»)(Bma-n — Bin-1y2-n) -

m=1

The above lemma implies that J;¥ —J — 1 almost everywhere for n — 0o
and we check also J} + J; = B}. Both of these identities come from
cancellations in the sum and imply together the claim. O

We mention now some trivial properties of the stochastic integral.

Theorem 4.16.4 (Properties of the Ito integral). Here are some basic prop-
erties of the Ito integral:

(1) Jo £(By) +9(Bs) dB. = [; f(B,) dB, + [; g(Bs) dB..
(2) [;A- f(Bs) dB, = X- [ §(B.) dB..

3)t— fot f(Bs) dB, is a continuous map from R+ to £2.
(4) E[fy £(By) dB,] = 0.

(5) fot f(Bs) dB; is A; measurable.

Proof. (1) and (2) follow from the definition of the integral.
For (3) define X; = f(; f(Bs) dB. Since

[ X: — Xt+e||§ = E[ f(Bs)? ds]
t

t+e 2
- / flz). e=" /2 dr ds — 0
t R 27s

for € — 0, the claim follows.
(4) and (5) can be seen by verifying it first for elementary functions f. O

It will be useful to consider an other generalizations of the integral.

Definition. If dW = dzdB is the Wiener measure on R¢ x C ([0, 00), define

/otf(W’) .= [ /Otf(w+Ba) dB, dz .
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Definition. Assume f is also time dependent so that it is a function on
R? x R. As long as E[fo1 | f(Bs, s)|? ds] < oo, we can also define the integral

/Otf(Bs,s) ds .

The following formula is useful for understanding and calculating stochas-
tic integrals. It is the ”fundamental theorem for stochastic integrals” and
allows to do ”change of variables” in stochastic calculus similarly as the
fundamental theorem of calculus does for usual calculus.

Theorem 4.16.5 (Ito’s formula). For a C? function f(z) on R?

f(By) — f(Bo) = /0 V§(B,)- dB,+% /0 AF(B,) ds

If B, would be an ordinary path in R? with velocity vector dB, = B, ds,
then we had

£(By) - f(Bo) = /0 Vi(B.)- B, ds

by the fundamental theorem of line integrals in calculus. It is a bit surprising
that in the stochastic setup, a second derivative A f appears in a first order
differential. One writes sometimes the formula also in the differential form

df=Vde+%Afdt.

Remark. We cite [11]: ”Ito’s formula is now the bread and butter of the
”quant” department of several major financial institutions. Models like that
of Blaek-Scholes constitute the basis on which a modern business makes de-
cisions about how everything from stocks and bonds to pork belly futures
should be priced. Ito’s formula provides the link between various stochastic
quantities and differential equations of which those quantities are the so-
lution.” For more information on the Black-Scholes model and the famous
Black-Scholes formula, see [16].

It is not much more work to prove a more general formula for functions
f(z,t), which can be time-dependent too:

Theorem 4.16.6 (Generalized Ito formula). Given a function f(z,t) on R¢ x
[0, t] which is twice differentiable in = and differentiable in ¢. Then

t t t
f(Bt,t)—f(Bo,O)z/o Vf(Bs,s)-st+%/o Af(Bs, s) ds+/o f(B,,s) ds .
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In differential notation, this means
1 .
df=Vde+(§Af+f) dt .

Proof. By a change of variables, we can assume ¢ = 1. For each n, we
discretized time

{o<2™<. .. tg=k-27" ... 1}
and define 6, B;, = B, — By, _,. We write
2"

f(Bla 1) - f(BOvO) = Z(Vf)(Btk—l’tk-—l)(snBtk

k=1

2"1
+ Z f(Btk’tk—l) - f(Btk-.wtk—l) - (Vf)(Btk—17tk-1)6nBtk
k=1

2"1

+ Zf(Btkatk) - f(Btk)tk—l)
k=1

= I,+1I,+1III,.

(i) By definition of the Ito integraI, the first sum I,, converges in £? to
1
Jo (V£)(Bs, s) dBs.

(i1) If p > 2, we have Zill |65 B¢, |P — 0 for n — oo.
Proof. 8, B;, is a N(0,27")-distributed random variable so that

x>
E[|6,, By, 7] = (2m)~Y/22-("0)/2) / lofPe="/2 dg = Co—(rP)/2 |

This means .
E[Z |0 By, |P] = C2n2~(nP)/2
k=1

which goes to zero for n — oo and p > 2.

(iii) S22, E[(Bs, — By, _,)*] — 0 follows from (ii). We have therefore

S Elg(By,, tx)*(Br, ~ By )P —27] < CY Varl(By, - Byy_,)?)
k=1 k=1
CZE[(Btk - Btk—1)4] —0.

k=1

IA

(iv) Using a Taylor expansion

£(@) = $0) = VS @) @—1) 5 3 Orue, F )@= Pila—v); + Olla ~ol°
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we get for n — oo
1
II, - 1; 3 %:3@,-zjf(Btk_1,tk—l)(énBtk)i(‘snBtk )i —0
in £2. Since
on
1; %C%ix,- F(Bty_y»tk-1)[(0nBt, )i(6nBe, )j — 055277

goes to zero in L2 (applying (ii) for g = 8;,4, f and note that (0, B, ); and
8 B¢, ); are independent for i # ), we have therefore
k)3

¢
I, — 1 / Af(Bs,s) ds
2Jo
in £2.
(v) A Taylor expansion with respect to ¢
f(.’l?,t) - f(xv S) - f(za S)(t - S) + O((t - 3)2)
gives
t
I, — / f(Bs,s) ds
0

in £! because s — f (Bs, s) is continuous and III, is a Riemann sum
approximation. m

Example. Consider the function
fz,t) = ear—a’t/2

Because this function satisfies the heat equation f + f”/2 = 0, we get from
Ito’s formula

t
.f(Btat)_f(BOat):a/ov f(Bs,S)' st .

We see that for functions satisfying the heat equation f+f" /2 =0 Ito’s
formula reduces to the usual rule of calculus. If we make a power expansion
in a of

t
/ eaB,—azs/2 dB = leaBs—a2s/2 _ _1__ ,
0 « 8%

we get, other formulas like

t
/Bsdel(Bf—t).
o 2
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Wick ordering.

There is a notation used in quantum field theory developed by Gian-Carlo
Wick at about the same time as Ito’s invented the integral. This Wick
ordering is a map on polynomials ¥, a;z* which leave monomials (poly-
nomials of the form z" + a,_ 2"~ *---) invariant.

Definition. Let
H,(z)Q0(z)
V2rn!

be the n’-th eigenfunction of the quantum mechanical oscillator. Define

Qn(x) =

1 T
"= —H,(—
2n/2 ( \/5)
and extend the definition to all polynomials by linearity. The Polynomxals

. 2" : are orthogonal with respect to the measure Q2dy = 7~1/2¢%" dy
because we have seen that the eigenfunctions 2, are orthonormal.

Example. Here are the first Wick powers:

r. = T

?: = 2°-1

3 = 23-3¢z

s = zt—622+43
2 = z°-102°+15z.

Definition. The multiplication operator Q : f — zf is called the position
operator. By definition of the creation and annihilation operators one has

Q=L (A+4).

The following formula indicates, why Wick ordering has its name and why
it is useful in quantum mechanics:

Proposition 4.16.7. As operators, we have the identity

T 1 *77,‘_ & * n—
QM= o (A AT = ;( )(A )Y AR

Definition. Define L = 3, < ;‘ ) (A*)IA™3.
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Proof. Since we know that 2, forms a basis in L2, we have only to verify
that : Q" : O = 2-n/21,Q, for all k. From

i) = larany () @ya)

3=0
— Z( ) A*)] lAn j_ (n_j)(A*)jAn—j—l
j=0
= 0
we obtain by linearity [Hy(v2Q), L]. Because: Q™ : o = 2-/2(n)1/2Q, =
2_"/2(14*)"90 = 2_n/2LQ(), we get

0 = (Q":-2""2L)Q
(k)™ l/sz VsQ)(: Q™ : —272L)y
= (Q" 27 "?L)(k!)~ 1/2Hk(¢§cz)no
( Qn n/ZL)Qk
0

Remark. The new ordering made the operators A, A* behaves as if A, B

would commutate. even so they don’t: they satisfy the commutation rela-
tions [4, A*] = 1:

The fact that stochastic integration is relevant to quantum mechanics can
be seen from the following formula for the Ito integral:

Theorem 4.16.8 (Ito Integral of B™). Wick ordering makes the Ito integral
behave like an ordinary integral.

t
1
:B": dB, = —— : B! . |
/0 s 8 n+1 t

Remark. Notation can be important to make a concept appear natural. An
other example, where an adaption of notation helps is quantum calculus,
”calculus without taking limits” [44], where the derivative is defined as
D,f(z) = dqf(z)/dg(x) with dqf( z) = f(gz) — f(z). One can see that
Dgz" = [n]z" !, where [n] = %— The limit ¢ — 1 corresponds to the
classical limit case A — 0 of quantum mechanics.

Proof. By rescaling, we can assume that { = 1.
We prove all these equalities simultaneously by showing

1
/ ce®Bs . dB=qa"1:e*Br . g7,
0
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The generating function for the Hermite polynomials is known to be

> a” a2
Z Hn(z)— = eaﬁ2_7 ’
n!

n=0

(We can check this formnla by multiplying it with Qq, replacing = with
z//2 so that we have

i Qn(x)a" _ eaz—%—%i
172~ :
= (n')/ .

If we apply A* on both sides, the equation goes onto itself and we get after
k such applications of A* that that the inner product with € is the same
on both sides. Therefore the functions must be the same.)

This means ,
(8N AR _1,2
:e‘”::E — =2
n!

Since the right hand side satisfies f + f”/2 = 2, the claim follows from the
Ito formula for such functions. O

We can now determine all the integrals [ BY dB:

t
/ldB = B
0

t
/BsdB = l(33—1)
o 2

t t 1 1 v
/deB = /;B§:+1dB=Bt+§(;Bt:3)=Bt+§(B;°’-.3Bt)
0 0
and so on.

Stochastic integrals for the oscillator and the Brownian bridge process.
Let Q: = e tB.2:/V/2 the oscillator process and A; = (1 = t)Bgj1-s) the
Brownian bridge. If we define new discrete differentials -

‘SHth — th+1_e_(tk+1—tk)th

t -1
oAy, = Ay, — Ay + HA%

the stochastic integrals can be defined as in the case of Brownian motion
as a limit of discrete integrals. :
Feynman-Kac formula for Schrodinger operators with magnetic fields.

Stochastic integrals appear in the Feynman-Kac formula for particles mov-
ing in a magnetic field. Let A(z) be a vector potential in R® which gives
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the magnetic field B(z) = curl(A). Quantum mechanically, a particle mov-
ing in an magnetic field together with an external field is described by the
Hamiltonian

H=(@GV+A?+V.

In the case A = 0, we get the usual Schrodinger operator. The Feynman-
Kac formula is the Wiener integral

e tHyu(0) = /e_F(B't)u(Bt) dB ,

where F(B,t) is a stochastic integral.
i [t t
F(B,t) = i/a(Bs) dB + 5/ div(A) ds + / V(Bs) ds .
0 0

4.17 Processes of bounded quadratic variation

We develop now the stochastic Ito integral with respect to general martin-
gales. Brownian motion B will be replaced by a martingale M which are
assumed to be in £2. The aim will be to define an integral

¢
/ K dM; ,
0

where K is a progressively measurable process which satisfies some bound-
edness condition.

Definition. Given a right-continuous function f : [0,00) — R. For each
finite subdivision
A={0=to,t1,....,t =tn}

of the interval [0,t] we define |A| = supj_; [ti+1 — t:| called the modulus of
A. Define

n—1

Hf”A = Z lfti+1 _ftil .

i=0

A function with finite total variation ||f}|: = supa ||flla < oo is called a
function of finite variation. If sup, |f|; < oo, then f is called of bounded
variation. One abbreviates, bounded variation with BV.

Example. Differentiable C* functions are of finite variation. Note that for
functions of finite variations, V; can go to oo for t — oo but if V; stays
bounded, we have a function of bounded variation. Monotone and bounded
functions are of finite variation. Sums of functions of bounded variation are
of bounded variation.

Remark. Every function of finite variation can be written as f = f t—f,
where f* are both positive and increasing. Proof: define f* = (f: +

l1£11e)/2.
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Remark. Functions of bounded variation are in one to one correspondence
to Borel measures on [0,00) by the Stieltjes integral fot ldf| = f;¥ + £

Definition. A process X; is called increasing if the paths X;(w) are finite,
right-continuous and increasing for almost all w € Q. A process X; is called
of finite variation, if the paths Xi(w) are finite, right-continuous and of
finite variation for almost all w € 9.

Remark. Every bounded variation process A can be written as A; = Af -
A7, where AF are increasing. The process V; = fot ldAls = Af + A; is
increasing and we get for almost all w € Q a measure called the variation
of A.

If X; is a bounded Ag-adapted process and A is a process of bounded
variation, we can form the Lebesgue-Stieltjes integral

(X - A)(w) :/0 Xs(w) dAs(w) .

We would like to define such an integral for martingales. The problem is:

Proposition 4.17.1. A continuous martingale M is never of finite variation,
unless it is constant.

Proof. Assume M is of finite variation. We show that it is constant.

() We can assume without loss of generality that M is of bounded varia-
tion.

Proof. Otherwise, we can look at the martingale M5~ where S, is the
stopping time S, = inf{s | V; > n} and V, is the variation of M on [0, ¢].

(i) We can also assume also without loss of generality that My = 0.

(iii) Let A = {to = 0,%1,...,t, = t} be a subdivision of [0,t]. Since M is a
martingale, we have by Pythagoras

k—
B[} (M2, - M?)]
=0
-1
= E[Z(Mii+1 - Mti)(MtHl + Mti)]
-
= E[Z(Mt“'l - Mti)gl

i=1

—

E[M}]

x> e
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and so

E[ME] < E[Vt(sup IMti+1 - Mti” <K-: E[Sup lMti+1 - Mti” .

If the modulus |A| goes to zero, then the right hand side goes to zero since
M is continuous. Therefore M = 0. O

Remark. This proposition applies especially for Brownian motion and un-
derlines the fact that the stochastic integral could not be defined point wise
by a Lebesgue-Stieltjes integral.

Definition. If A = {tx = 0 < t; < ... } is a subdivision of R* = [0, 00) with
only finitely many points {to,t1,...,tx } in each interval [0,t], we define
for a process X

k-1
TtA = TtA(X) = (Z(Xti+1 - Xti)2) +(X: - th)2 .

=0

The process X is called of finite quadratic variation, if there exists a process
< X,X > such that for each t, the random variable TtA converges in
probability to < X, X >; as |A| — 0.

Theorem 4.17.2 (Doob-Meyer decomposition). Given a continuous and
bounded martingale M of finite quadratic variation. Then < M, M > is
the unique continuous increasing adapted process vanishing at zero such
that M%2— < M, M > is a martingale.

Remark. Before we enter the not so easy proof given in [83], let us mention
the corresponding result in the discrete case (see theorem (3.5.1), where
M? was a submartingale so that M? could be written uniquely as a sum
of a martingale and an increasing previsible process.

Proof. Uniqueness follows from the previous proposition: if there would be
two such continuous and increasing processes A, B, then A — B would be
a continuous martingale with bounded variation (if A and B are increas-
ing they are of bounded variation) which vanishes at zero. Therefore A = B.

(i) M? — TA(M) is a continuous martingale.
Proof. For t; < s < t;41, we have from the martingale property using that

(My,,, — M,)? and (M, — M,,)? are independent,

E[(Mt¢+1 - Mti)z | 'AS] = E[(Mtz‘+1 - M3)2|AS] + (MS - Mti)2 .
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This implies with 0 =ty < t; < -+ <t; < s < 41 < -+ < tx < t and
using orthogonality
. ,

E[TS (M) - TA (M)A = E[Y (M, — My,)?| Al

j=l
E[(Mt - Mtk)2|AS] + E[(Ms - Mtz)zl‘AS]
E[(Mt - M8)2IA8] = E[Mt2 - MEIAS] :

This implies that M7 — T/*(M) is a continuous martingale.

+

(ii) Let C be a constant such that |M| < C in [0,a]. Then E[T2] < 4C?,

independent of the subdivision A = {t,...,t,} of [0,q].

Proof. The previous computation in (i) gives for s = 0, using TA(M) =0
E[T;"(M)|Ao] = E[M} — Mg | Ao] < E[(M, — Mo)(M, + My)] < 4C?.

(iii) For any subdivision A, one has E[(T'2)?] < 48C*.
Proof. We can assume ¢, = a. Then

M=

(T = (Y (My — My, ,)?)?

k=1
n n
= 2) (TE-TAYTA-TA )+ (M, — M, _,)*.
k=1 k=1

From (i), we have
E[Tf - Tt€|Atk] = E[(Mﬂ - Mtk)z | Aik]

and consequently, using (ii)

n n

E[(Tf)2] = 2ZE[(ME - Mtk)z(Tte - Tti{_l)] + z E[(Mtk - Mik—1)4]
k=1 k=1

E[(2 Sl;p IMa - Mtk |,2 + Sl]’;p |Mtk - Mtk—l |2)TaA]

IA

< 12C%E[T?] < 48C* .

(iii) For fixed a > 0 and subdivisions A, of [0, a] satisfying |A,| — 0, the
sequence T2~ has a limit in £2.

Proof. Given two subdivisions A’, A” of [0,a], let A be the subdivision
obtained by taking the union of the points of A’ and A”. By (i), the process
X=T%-T%"isa martingale and by (i) again, applied to the martingale
X instead of M we have, using (z + )2 < 2(z? + ¢?)

E[X2] = E[(T& - TA")?] = E[TA(X)] < 2(E[T2(T2)] + E[TA(T2"))) .

We have therefore only to show that E[T2(T2")] — 0 for |A] + |A”| — 0.
Let sx be in A and ¢, the rightmost point in A’ such that t,, < si <
Sk+1 < tm+1. We have
TSAkI+1 - T::, = (M3k+1 - th)2 - (MSk - th)2
(M8k+1 - Msk)(MSk+1 + Msk - 2th)
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and so -
TaA(TA ) < (sup |M3k+1 + Msk - 2thl2)TaA .
: k

By the Cauchy Schwarz-inequality

E[TA(T*)] < Elsup [Ma,, + My, — 2Me, ['2BITE)Y?
k

and the first factor goes to 0 as |{A] — 0 and the second factor is bounded
because of (iii).

(iv) There exists a sequence of An C Apy1 such that T (M) converges
uniformly to a limit (M, M) on [0, a].
Proof. Doob’s inequality applied to the discrete time martingale T4~ ~TAm
gives

Efsup [T - TY %) < AE[(TA - Tom)%

t<a

Choose the sequence A, such that Apyq is a refinement of A, and such
that |J,, A, is dense in [0,a], we can achieve that the convergence is uni-
form. The limit (M, M) is therefore continuous.

(v) (M, M) is increasing.

Proof. Take A, C Any1. For any pair s <t in U,, An, we have TSA"(M) <
TtA"(M ) if n is so large that A, contains both s and t. Therefore (M, M)
is increasing on |J,, An, which can be chosen to be dense. The continuity
of M implies that (M, M) is increasing everywhere. 0

Remark. The assumption of boundedness for the martingales is not essen-
tial. It holds for general martingales and even more generally for so called
local martingales, stochastic processes X for which there exists a sequence
of bounded stopping times T}, increasing to oo for which XT» are martin-
gales.

Corollary 4.17.3. Let M, N be two continuous martingales with the same
filtration. There exists a unique continuous adapted process (M, N) of finite
variation which is vanishing at zero and such that

MN — (M, N)

is a martingale.

Proof. Uniqueness follows again from the fact that a finite variation mar-
tingale must be zero. To get existence, use the parallelogram law

(M, N) = %((M+N,M+N)—(M—N,M—N)).
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This is vanishing at zero and of finite variation since it is a sum of two
processes with this property.

We know that M? — (M, M), N? — (N, N) and so that (M + N)? — (M +
N, M + N) are martingales. Therefore

(M+N)2—(M+N,M+N)—(M—N)2~(M—N,M—N)
= 4MN -~ (M +N,M +N)— (M —N,M —N) .

and MN — (M, N} is a martingale. d

Definition. The process (M, N) is called the bracket of M and N and
(M, M) the increasing process of M.

Example. If B = (B, ..., B(¥) is Brownian motion, then (< B® BU) =
d;;5t as we have computed in the proof of the Ito formula in the case # = 1.
It can be shown that every martingale M which has the property that

<M(i),M(j)> =0yt

must be Brownian motion. This is Lévy’s characterization of Brownian
motion.

Remark. If M is a martingale vanishing at zero and (M, M) = 0, then
M = 0. Since M? — (M, M), is a martingale vanishing at zero, we have
E[M?] = E[(M, M)].

Remark. Since we have got (M, M) as a limit of processes T2, we could
also write (M, N} as such a limit.

4.18 The Ito integral for martingales

In the last section, we have defined for two continuous martingales M,N,
the bracket process (M, N). Because (M, M) was increasing, it was of fi-
nite variation and therefore also (M, N) is of finite variation. It defines a
random measure d(M, N).

Theorem 4.18.1 (Kunita-Watanabe inequality). Let M, N be two continu-
ous martingales and H, K two measurable processes. Then for all p,q > 1
satisfying 1/p+1/¢q =1, we have for all ¢t < 0o

! ‘ 2 1/2
E[/O |H,| | K| [d{M,N),|] < il(/0 Hid{M, M))"*{|,

It /0 K2d({N,N))/|,
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Proof. (i) Define (M, N)t = (M,N); — (M, N),. Claim: almost surely

(M, N)L| < ((M, M)L)V2((N, NYY2.
Proof. For fixed r, the random variable
(M, M), +2r(M,N); +r*(N,N); = (M + 7N, M +rN);

is positive almost everywhere and this stays true simultaneously for a dense
set of r € R. Since M, N are continuous, it holds for all 7. The claim follows,
since a+2rb+cr? > 0 for all » > 0 with nonnegative a, ¢ implies b < \/a+/c.

(ii) To prove the claim, it is, using Holder’s inequality, enough to show
almost everywhere, the inequality

/ | K| di(M, N, < ( / H2d(M, M)V - ( / K2d(N, N))V?
0 0 0

holds. By taking limits, it is enough to prove this for t < oo and bounded
K, H. By a density argument, we can also assume the both K and H are
step functions H = Y. | H;1,, and K = 5. | K;1;,, where J; = [t;, t;11).

(iii) We get from (¢) for step functions H, K as in (ii)

i
[ BN SR, N
0 i

IA

Z [HLEG (M, M)yt )2 (M, M) )2

IA

O HXM, M) )2 () KHN, Ny )2

= /0 H2d(M, M)V / K24V, V)2

where we have used Cauchy-Schwarz inequality for the summation over
i. a

Definition. Denote by H? the set of Ez—martingales which are .4;-adapted
and satisfy
1M]l34, = (sup E[MF)Y? < o0
t

Call H? the subset of continuous martingales in H? and with HZ the subset
of continuous martingales which are vanishing at zero.

Given a martingale M € H?, we define £Z(M) the space of progressively
measurable processes K such that

K12y, = E[/O K2d(M, M),] < 00 .

Both M2 and £2(M) are Hilbert spaces.
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Lemma 4.18.2. The space H? of continuous £ martingales is closed in H2
and so a Hilbert space. Also HZ is closed in H? and is therefore a Hilbert
space. '

Proof. Take a sequence M(™ in H? converging to M € HZ. By Doob’s
inequality
E(sup [M} — Mi])?) < 4||M™ — M|[Z, .
t

(ni)

We can extract a subsequence, for which sup, M, *’ — M| converges point
wise to zero almost everywhere. Therefore M € H?2. The same argument
shows also that H? is closed.’ O

Proposition 4.18.3. Given M € H? and K € L£2(M). There exists a unique
element 7 KdM € HZ such that

t t
< / KdM,N >= / Kd(M, N)
0 0

for every N € H%. The map K — fot KdM is an isometry form £2(M) to
HZ.

Proof. We can assume M € Hj since in general, we define fot K dM =
Jy K d(M — My).

(i) By the Kunita-Watanabe inequality, we have for every N € HZ
t
B[ KoM, N < [¥lhge - 1K oy -

The map .
N E[(/O K.) d(M, N),]

is therefore a linear continuous functional on the Hilbert space H3. By
Riesz representation theorem, there is an element [ K dM € HZ such that

B[( /0 "K, dM,)N,] = E| /0 KoM, N)J]

for every N € HZ.
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(ii) Uniqueness. Assume there exist two martingales L, L’ € H3? such that
(L,N) = (L', N) for all N € H}. Then, in particular, (L — L',L-L") =0,
from which L = L’ follows.

(iii) The integral K — fg K dM is an isometry because

t
2
| [ & ami,

E[(/Ooo K, dM,)?

o / ~ K2 dM, M)]

2
' a

Definition. The martingale fot K, dM, is called the Ito integral of the
progressively measurable process K with respect to the martingale M. We
can take especially, K = f(M), since continuous processes are progressively
measurable. If we take M = B, Brownian motion, we get the already
familiar Ito integral.

Definition. An A; adapted right-continuous process is called a local martin-
gale if there exists a sequence T}, of increasing stopping times with 75, — oo
almost everywhere, such that for every n, the process X Tn 1{1,>0} is & uni-
formly integrable A;-martingale. Local martingales are more general than
martingales. Stochastic integration can be defined more generally for local
martingales.

We show now that Ito’s formula holds also for general martingales. First,
a special case, the integration by parts formula.

Theorem 4.18.4 (Integration by parts). Let X,Y be two continuous mar-
tingales. Then

t t
X.Y; — XoYo = / X, dY, + / YidX, + (X,Y);
0 0

and especially

t
Xf—X§=2/O X, dXs + (X, X .

Proof. The general case follows from the special case by polarization: use
the special case for X +Y as well as X and Y.

The special case is proved by discretisation: let A = {to,t1,...,t,} be a
finite discretisation of [0,¢]. Then

Z(Xti+l - Xti)z = Xt2 - Xg - 2ZXt,- (Xti+1 - Xti) .
i=1 =1



264 Chapter 4. Continuous Stochastic Processes

Letting |A| going to zero, we get the claim. O

Theorem 4.18.5 (Ito formula for martingales). Given vector martingales
M=(M®O,...,M®) and X and a function f € C2(R¢,R). Then

t t . .
F(X0)—F(Xo) = /0 Vi) dMet L Y /0 2.0, foras (Xs) (M, MO
ij

Proof. 1t is enough to prove the formula, for polynomials. By the integration
by parts formula, we get the result for functions f () = zig(z), if it is
established for a function g. Since it is true for constant functions, we are
done by induction. 0

Remark. The usual Ito formula in one dimensions is a special case

t 1 t
f(Xe) - f(Xo) = / f'(Xs) dB, + 5/ f"(Xs) ds .
0 0
In one dimension and if M; = B, is Brownian motion and X; is a martin-

gale, we have We will use it later, when dealing with stochastic differential
equations. It is a special case, because (B;, B;) = t, so that d(By, By) = dt.

Example. If f(x) = 22, this formula gives for processes satisfying Xg = 0

t
1
X3/2=/0 X, dB; + 5t

This formula integrates the stochastic integral fot X,dBs = X2/2 - t/2.

Example. If f(x) = log(z), the formula gives
log(X:/Xo) = / aB/X, - / ds/ X2 .
0 0

4.19 Stochastic differential equations

We have seen earlier that if B; is Brownian motion, then X = f(B,t) =

e@Br=a’t/2 jg 5 martingale. In the last section we learned using Ito’s formula
and and %Af%—f =0 that

t
/aXdes=Xt—1.
]

We can write this in differential form as

ng = aXt th,X(] =1.
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This is an example of a stochastic differential equation (SDE) and one
would use the notation IX

dM
if it would not lead to confusion with the corresponding ordinary differential

equation, where M is not a stochastic process but a variable and where the

solution would be X = e>B. Here, the solution is the stochastic process
X, = eaBi—a t/2

=aX

Definition. Let B; be Brownian motion in R%. A solution of a stochastic
differential equation

dX¢ = f(X¢, By) -dB: + g(Xy) dt ,

is a R%-valued process X, satisfying

t t
Xy = / f(Xs,Bs) - dBs +/ 9(X,) ds,
0 0

where f: R? x R* - R? and g: RY x RT — RY.

As for ordinary differential equations, where one can easily solve separable
differential equations dz/dt = f(z) + g(t) by integration, this works for
stochastic differential equations. However, to integrate, one has to use an
adapted substitution. The key is Ito’s formula (4.18.5) which holds for
martingales and so for solutions of stochastic differential equations which
is in one dimensions

FIXD) = F(Xo) /f ) dX, + /f” d(X,, Xs) .

The following " multiplication table” for the product (-,-) and the differen-
tials dt, dB; can be found in many books of stochastic differential equations
[2, 46, 66] and is useful to have in mind when solving actual stochastic dif-
ferential equations:

| | dt [ dB; |
dd [0 ]o0
dB; | 0 | ¢

Example. The linear ordinary differential equation dX /dt = rX with solu-
tion X; = "X has a stochastic analog. It is called the stochastic popula-
tion model. We look for a stochastic process X; which solves the SDE

[19:¢

dtt = TXt + aXtCt

Separation of variables gives

%?— = rtdt + aldt



266 Chapter 4. Continuous Stochastic Processes

and integration with respect to ¢

dX
/0 X: =rt+aB;.

In order to compute the stochastic integral on the left hand side, we have to
do a change of variables with f(X) = log(z). Looking up the multiplication
table:

(dX¢,dX,) = (rX.dt + aX;dBy, rX¢dt + o® X,dB;) = o® X7dt .

Ito’s formula in one dimensions

F(X0) = £(Xo) = /f dX+/f" )Xo X.)

gives therefore

t t
log(X:/Xo) = / dXs/Xs—% / o?ds
0 0

so that fg dX,/Xs = a®t/2 + log(X:/Xo). Therefore,
at/2 + log(X:/Xo) = rt + aB;

and so X; = Xgert—o't/2+aB: This process is called geometric Brownian
motion. We see especially that X = X/2 + X¢ has the solution X; = eB

Figure. Solutions to the stochastic Figure. Solutions to the stochastic
population model for r > 0. population model for r < 0.

Remark. The stochastic population model is also important when modeling
financial markets. In that area the constant r is called the percentage drift
or expected gain and « is called the percentage volatility. The Black-Scholes
model makes the assumption that the stock prices evolves according to
geometric Brownian motion.
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Example. In principle, one can study stochastic versions of any differential
equation. An example from physics is when a particle move in a possibly
time-dependent force field F(z,t) with friction b for which the equation
without noise is

= —bz+ F(x,t) .

If we add white noise, we get a stochastic differential equation
&= —-bi+ F(z,t) + o((t) .

For example, with X = % and F = 0, the function v(t) satisfies the stochas-
tic differential equation
dX;
— = —-bX ,
7 t +ag
which has the solution
Xt = e_bt + aBt .

With a time dependent force F(z,t), already the differential equation with-
out noise can not be given closed solutions in general. If the friction constant

b is noisy, we obtain
dX
d_tt = (=b+ al:)X:

which is the stochastic population model treated in the previous example.

Example. Here is a list of stochastic differential equations with solutions.
We again use the notation of white noise ((t) = dt B which is a generalized
function in the following table. The notational replacement dB; = (,dt is
quite popular for more applied sciences like engineering or finance.

Stochastic differential equation | Solution
Xt = 1C( ) : Xt = Bt
tht By((t) X;=:B?:/2=(B?-1)/2
= BZ((t) X:=:B}:/3=(B}-3B;)/3
= B3((t) X;=:Bf: /4= (B} -6B?+3)/4
= B¥(t) X, =:B}: /5= (B} — 10B} + 15B;)/5
—j—tXt = aX((t) X, = e?Be’t/?
LX, =X, + aXe((t) X, = erttoBi—a’t/2

Remark. Because the Ito integral can be defined for any continuous martin-
gale, Brownian motion could be replaced by an other continuous martingale
M leading to other classes of stochastic differential equations. A solution
must then satisfy

t t
Xt=/ f(Xs,Ms,s) .dMs—}—/ g(Xs,s) ds
0 0

_Example.
Xt — eaMt—az(X,X)t/2

is a solution of dX; = aMdM;, My = 1.
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Remark. Stochastic differential equations were introduced by Ito in 1951.
Differential equations with a different integral came from Stratonovich but
there are formulas which relating them with each other. So, it is enough
to consider the Ito integral. Both versions of stochastic integration have
advantages and disadvantages. Kunita shows in his book [55] that one can
view solutions as stochastic flows of diffeomorphisms. This brings the topic
into the framework of ergodic theory.

For ordinary differential equations # = f(z,t), one knows that unique solu-
tions exist locally if f is Lipshitz continuous in z and continuous in ¢. The
proof given for 1-dimensional systems generalizes to differential equations
in arbitrary Banach spaces. The idea of the proof is a Picard iteration of
an operator which is a contraction. Below, we give a detailed proof of this
existence theorem for ordinary differential equations. For stochastic differ-
ential equations, one can do the same. We will do such an iteration on the
Hilbert space H[20,¢] of £2 martingales X having finite norm

IX||r = E[sup X7] .
t<T

We will need the following version of Doob’s inequality:

Lemma 4.19.1. Let X be a £LP martingale with p > 1. Then

Blsup [X, ] < (=E)° - B[]

Proof. We can assume without loss of generality that X is bounded. The
general result follows by approximating X by X A k with k£ — oo.
Define X* = sup,<; | Xs|P. From Doob’s inequality

P[X > A < E[|X¢| - 1x+3]

we get
-
EIXP] = E[[ p¥dn
0
= E[/ pAp‘-ll{XtZ)\} d)\]
0
_ E[/ pAPIPIX* > A] dA]
0
< B[ p¥TIEIN Lxsa) 4N
0
X*
= pE[X,| / A2 g\
0

= BBl (P
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Holder’s inequality gives
BIX"P) < ~EL B PE X, P

and the claim follows. 0

Theorem 4.19.2 (Local existence and uniqueness of solutions). Let M be a
continuous martingale. Assume f(z,t) and g(z,t) are continuous in ¢ and
Lipshitz continuous in z. Then there exists T > 0 and a unique solution
X of the SDE

dX = f(z,t) dM + g(z,t) ds

with initial condition X, = Xj.

Proof. Define the operator

S(X) = /0 £(5, Xs) dM, + /0 o(s, X,) ds

on L?-processes. Write S(X) = S 1{X)+S82(X). We will show that on some
time interval (0, T], the map S is a contraction and that S"(X) converges
in the metric (|| X — Y|||r = E[sup,<p(X, — Y;)?], if T is small enough to
a unique fixed point. It is enough that for i = 1,2

IS:(X) = Si(V)lllr < (1/4) - IX = Y ||z
“then S is a contraction

NSX) —SWM)lllr < (1/2)- |1 X = Y| .
By assumption, there exists a constant K, such that

1f(t,w) - f(t,0')] < K- supjw —w'].

@) 1S1(X) = S1(Wllir = Il fy £(s, Xs) — f(5,Ya) dM,]l|z < (1/4)- ||| X —
Y|||7 for T small enough.
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Proof. By the above lemma for p = 2, we have

115100 = S1¥)lllr = Elsup( /tf(s,X)—f(s,Y) MY
t<T JO

IA

T
4E(( /0 £, X) - £(8,Y) dML)?)
T
T / (6, X) — £(6,Y))? d(M, M),]

T
< 4K’E] / sup | X, — Ys|? dt]
0

s<t

T

= g [ lIX =Yl ds
0

(1/4) - NIX = Ylllr ,

where the last inequality holds for T’ small enough.

IN

(i) [[182(X) = S20)lllr = Il Jg 9(s, Xs) — 9(5,Ya) dslir < 1/4) - 1lIX -
Y|||r for T small enough. This is proved for differential equations in Banach
spaces.

The two estimates (i) and (ii) prove the claim in the same way as in the
classical Cauchy-Picard existence theorem. O

Appendix. In this Appendix, we add the existence of solutions of ordinary
differential equations in Banach spaces. Let X be a Banach space and I an
interval in R. The following lemma is useful for proving existence of fixed
points of maps.

Lemma 4.19.3. Let X = B.(zo) C X and assume ¢ is a differentiable map
X — X.Iffor all z € X, ||Dg(z)|] < |A| <1 and

llp(zo) — zoll < (L =A) -7

then ¢ has exactly one fixed point in X.

Proof. The condition ||z — Zo|| <7 implies that

ll6(z) — zol| < 116(x) — d(@o)ll + l|é(z0) — zol| < Ar+ QL=Nr=r.

The map ¢ maps therefore the ball X into itself. Banach’s fixed point
theorem applied to the complete metric space X and the contraction ¢
implies the result. a

Let f be a map from I X X to X . A differentiable map u: J — X of an
open ball J C I'in X' is called a solution of the differential equation

z =f(t,$)



4.19. Stochastic differential equations 271

if we have for all ¢t € J the relation

w(t) = f(t,ul(t)) .

Theorem 4.19.4 (Cauchy-Picard Existence theorem). Let f: I x X — X
be continuous in the first coordinate and locally Lipshitz continuous in the
second. Then, for every (£, xo) € I X X, there exists an open interval J C I
with midpoint ¢g, such that on J, there exists exactly one solution of the
differential equation z = f(¢, z).

Proof. There exists an interval J(tp,a) = (to — a,to + a) C I and a ball
B(zg,b), such that

M = sup{||f(t, )| | (t,z) € J(to,a) x B(zo,b)}

as well as

{”f(t’ml) — f(tv z2)

l|z1 ~ z2]|

k = sup ” | (tvxl), (t,m2) € J(to,a)XB(.’L‘o,b),:El 7é 11,‘2}

are finite. Define for r < a the Banach space
- X, =C(J(to,r),X) = {y : J(to,r) = X, y continuous}

with norm

lyll = sup [ly(®)l|
teJ(to,r)

Let V;, be the open ball in X, with radius b around the constant map
t — zq. For every y € V., we define

oY) it x9+ t f(s,y(s))ds

which is again an element in X',. We prove now, that for r small enough,
¢ is a contraction. A fixed point of ¢ is then a solution of the differential
equation £ = f(t, ), which exists on J = J,.(¢). For two points y;,y2 € V;,
we have by assumption

17 (8, 91(5)) — f(s, y2(sNIl < k- |lya(s) — g2(s)ll < k- [lyn — w2

for every s € J,. Thus, we have

[lo(y1) — d(w2)ll

i

I / £(5,31(5)) - (5, 2(s)) dsl|

IA

t
A £ (s,y1(s)) = £(s,y2(s))ll ds

kr - lyr — gl -

IA
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On the other hand, we have for every s € Jr

1f (s, (DIl < M

and so

lé(z0) — zoll = I / F(s,70(s)) dsll < [ 117(s,z0(s))| ds < M -7 .

to

We can apply the above lemma, if kr < 1 and Mr < b(1 — kr). This is
the case, if r < b/(M + kb). By choosing r small enough, we can get the
contraction rate as small as we wish. O

Definition. A set X with a distance function d(z,y) for which the following
properties

(i) d(y,z) = d(z,y) > 0 for all z,y € X.

(ii) d(z,z) = 0 and d(z,y) > 0 for z # y.

(iii) d(z, 2) < d(z,y) + d(y, z) for all z,y, 2. bold is called a metric space.

Example. The plane R? with the usual distance d(z,y) = |z —y|. An other
metric is the Manhattan or taxi metric d(z,y) = |z1 — 1| + |22 — ¥2|-

Example. The set C([0,1]) of all continuous functions z(t) on the interval
[0,1] with the distance d(z,y) = max; |z(t) — y(t)| is a metric space.

Definition. A map ¢ : X — X is called a contraction, if there exists A <1
such that d(¢(x), p(y)) < A-d(z,y) for all 2,y € X. The map ¢ shrinks the
distance of any two points by the contraction factor A.

Example. The map ¢(z) = 3z + (1,0) is a contraction on R2.
)(t) = sin(t
B = | sin(t)

8

Example. The map ¢( )z(t) + t is a contraction on C([0,1])
because |¢(z)(t) — #(y) | lz(t) — y(t)] < sin(1) - |z(t) — y(@)]-

Definition. A Cauchy sequence in a metric space (X, d) is defined to be a
sequence which has the property that for any € > 0, there exists ng such
that |Tn, — m| < € for n > ng,m > no.

A metric space in which every Cauchy sequence converges to a limit is
called complete.

—

Example. The n-dimensional Euclidean space
(Rn,d(l‘,y)=|.’t—y|= .’II%-}--’-Z‘%)
is complete. The set of rational numbers with the usual distance

(@Q d(z,y) = Iz - yl)

is not complete.
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Example. The space C|[0, 1] is complete: given a Cauchy sequence Zn, then
zn(t) is a Cauchy sequence in R for all t. Therefore z,(t) converges point
wise to a function z(t). This function is continuous: take € > 0, then |z(t) —
z(s)| < |z(t) — ()] + |Zn(t) — yn(s)] + lyn(s) — y(s)| by the triangle
inequality. If s is close to ¢, the second term is smaller than ¢/3. For large
n, |z(t) — zn(t)] < €/3 and |yn(s) — y(s)| < €/3. So, |z(t) - z(s)| < eif
|t — s| is small.

Theorem 4.19.5 (Banachs fixed point theorem). A contraction ¢ in a com-
plete metric space (X, d) has exactly one fixed point in X.

Proof. (i) We first show by induction that

d(¢"(x),¢" () < A" - d(z,y)

for all n.

(ii) Using the triangle inequality and Y, A\* = (1 — A)™!, we get for all
reX,

—

n—1

dla,6"2) < 3 d(st2,02) < 3 Whd(@,0(a)) < 1 - Ao 8(2))

k=0 k=0

n—

(iii) For all z € X the sequence z, = ¢"(z) is a Cauchy sequence because
by (1),(i),

1
AT, Tnik) < A" - d(z,21) < A" - T d(z,z1) .
By completeness of X it has a limit Z which is a fixed point of ¢.

(iv) There is only one fixed point. Assume, there were two fixed points Z,y
of ¢. Then

d(Z,9) = d(¢(2), 6(7)) < A-d(Z,9) .

This is impossible unless = . O
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Chapter 5

Selected Topics

5.1 Percolation

Definition. Let ¢; be the standard basis in the lattice Z4. Denote with L¢
the Cayley graph of 7% with the generators A = {e1,...,€d4 }. This graph
L4 = (V,E) has the lattice 7@ as vertices. The edges or bonds in that
graph are straight line segments connecting neighboring points z,y. Points

satisfying |z — y| = iey 2 — %l = 1.

Definition. We declare each bond of L¢ to be open with probability p €
[0,1] and closed otherwise. Bonds are open ore closed independently of all
other bonds. The product measure P, is defined on the probability space
Q = [1.ex{0,1} of all configurations. We denote expectation with respect
to P, with Ep[-].

Definition. A path in L¢ is a sequence of vertices (xo, %1, - . -, Tn) such that
(xi,ZTi+1) = €; are bonds of Le. Such a path has length n and connects zo
with Z,. A path is called open if all its edges are open and closed if all its
edges are closed. Two subgraphs of L9 are disjoint if they have no edges
and no vertices in common.

Definition. Consider the random subgraph of L¢ containing the vertex set
Z4 and only open edges. The connected components of this graph are called
open clusters. If it is finite, an open cluster is also called a lattice animal.
Call C(z) the open cluster containing the vertex z. By translation invari-
ance, the distribution of C(z) is independent of z and we can take z = 0
for which we write C(0) = C.

275
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Figure. A lattice animal.

Definition. Define the percolation probability 6(p) being the probability
that a given vertex belongs to an infinite open cluster.

8(p) =P[|C| = 0] =1~ Y P[|C| =n].

n=1

One of the goals of bond percolation theory is to study the function 6(p).

Lemma 5.1.1. There exists a critical value p, = Pc(d) such that 6(p) = 0
for p < p. and 8(p) > 0 for p > p.. The value d — Pc(d) is non-increasing
with respect to the dimension p.(d + 1) < pe(d).

Proof. The function p — 6(p) is non-decreasing and 6(0) =0,0(1) = 1. We
can therefore define :
pc=inf{p€[0,1]|6(p) > 0}.

The graph Z* can be embedded into the graph Z%' for d < d’ by realizing Z¢
as a linear subspace of Z% parallel to a coordinate plane. Any configuration
in LY projects then to a configuration in L%. If the origin is in an infinite
cluster of Z¢, then it is also in an infinite cluster of Vil a

Remark. The one-dimensional case d = 1 is not interesting because p. = 1
there. Interesting phenomena are only possible in dimensions d > 1. The
planar case d = 2 is already very interesting.

Definition. A self-avoiding random walk in L¢ is the process St obtained
by stopping the ordinary random walk S, with stopping time

T(w) = inf{n € N w(n) = w(m),m < n} .

Let o(n) be the number of self-avoiding paths in L¢ which have length n.
The connective constant of L¢ is defined as

Ad) = lim o(n)/™ .
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Remark. The exact value of A\(d) is not known. But one has the elementary
estimate d < A(d) < 2d — 1 because a self-avoiding walk can not reverse
direction and so o(n) < 2d(2d — 1)"! and a walk going only forward
in each direction is self-avoiding. For example, it is known that A(2) €
[2.62002, 2.69576] and numerical estimates makes one believe that the real
value is 2.6381585. The number ¢, of self-avoiding walks of length n in L?is
for small values ¢; = 4,c3 = 12,¢3 = 36,c4 = 100, c5 = 284,¢c6 = 780,¢7 =
2172, .... Consult [62] for more information on the self-avoiding random
walk.

Theorem 5.1.2 (Broadbent-Hammersley theorem). If d > 1, then

0<Ad)™ <peld) <pe(2) <1.

Proof. (i) pe(d) > Md)™".
Let N(n) < o(n) be the number of open self-avoiding paths of length n in
L". Since any such path is open with probability p™, we have

Ep[N(n)] =p"o(n) .

If the origin is in an infinite open cluster, there must exist open paths of
all lengths beginning at the origin so that

0(p) < Pp[N(n) > 1] < Ey[N(n)] = p"o(n) = (pA(d) + o(1))"
which goes to zero for p < A(p)~!. This shows that p.(d) > M\(d)~!.

(i) pc(2) < 1.

Denote by L2 the dual graph of L? which has as vertices the faces of L? and
as vertices pairs of faces which are adjacent. We can realize the vertices as
Z2 + (1/2,1/2). Since there is a bijective relation between the edges of L2
and L2 and we declare an edge of L2 to be open if it crosses an open edge

in L2 and closed, if it crosses a closed edge. This defines bond percolation
on L2.

The fact that the origin is in the interior of a closed circuit of the dual
lattice if and only if the open cluster at the origin is finite follows from the
Jordan curve theorem which assures that a closed path in the plane divides
the plane into two disjoint subsets.

Let p(n) denote the number of closed circuits in the dual which have length
n and which contain in their interiors the origin of L2. Each such circuit
contains a self-avoiding walk of length n — 1 starting from a vertex of the
form (k +1/2,1/2), where 0 < k < n. Since the number of such paths = is
at most no(n — 1), we have

p(n) <no(n—1)
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and withg=1-p

Z Ply is closed] < Z g"no(n—1) = Z qn(gA(2) + o(1))*1
~ n=1 n=1

which is finite if gA(2) < 1. Furthermore, this sum goes to zero if ¢ — 0 so
that we can find 0 < § < 1 such that for p > §

ZP[’y is closed] < 1/2.
5

We have therefore

P[|C| = 00] = P[no 7y is closed] > 1 — ZPh is closed| > 1/2
v

so that p.(2) <d < 1. O

Remark. We will see below that even p.(2) < 1 — A(2)~L. It is however
known that p.(2) = 1/2.

Definition. The parameter set p < p, is called the sub-critical phase, the
set p > p. is the supercritical phase.

Definition. For p < p,, one is also interested in the mean size of the open
cluster
x(p) = Ep||C]] .

For p > p., one would like to know the mean size of the finite clusters
X (0) = B,[IC] | IC] < o0] .

It is known that x(p) < oo for p < p. but only conjectured that y (p) < 00
for p > p..

An interesting question is whether there exists an open cluster at the critical
point p = p.. The answer is known to be no in the case d = 2 and generally
believed to be no for d > 3. For p near p, it is believed that the percolation
probability 6(p) and the mean size x(p) behave as powers of |p — el It is
conjectured that the following critical exponents

o Losx(®)
p/p. log [p — pc|
log 6(p)
pNpe log|p — p|
-m IOSPPc“Cl Z n

7 = — i
n—oo logn

].
exist.

Percolation deals with a family of probability spaces (2, A,Pp), where
Q = {0, l}u‘d is the set of configurations with product o-algebra .4 and
product measure P, = (p,1 — p)n‘d.
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Definition. There exists a natural partial ordering in {2 coming from the
ordering on {0,1}: we say w < o/, if w(e) < w'(e) for all bonds e € L2.
We call a random variable X on (€, 4,P) increasing if w < w’' implies
X(w) € X(w'). It is called decreasing if —X is increasing. As usual, this
notion can also be defined for measurable sets A € A: a set A is increasing
if 14 is increasing.

Lemma 5.1.3. If X is a increasing random variable in LY, P,) NLY(Q,Pyp),
then
B,[X] < BqlX]

ifp<g

Proof. If X depends only on a single bond e, we can write E,[X] =pX(1)+
(1 — p)X(0). Because X is assumed to be increasing, we have E%EP[X | =
X(1) — X(0) > 0 which gives E,[X] < E,[X] for p < q. If X depends only
on finitely many bonds, we can write it as a sum X = Z‘::l X; of variables
X; which depend only on one bond and get again

d n
B = g(xi(l) - Xi(0) 20.

In general we approximate every random variable in LY, P,) N LYHQ, Py)
by step functions which depend only on finitely many coordinates X;. Since

E,[Xi] — Ep[X] and Eg[X;] — E¢[X], the claim follows. O

The following correlation inequality is named after Fortuin, Kasterleyn and
Ginibre (1971).

Theorem 5.1.4 (FKG inequality). For increasing random variables X,Ye
£%(Q,P,), we have
B,[XY] > E,[X]-E,[Y] .

Proof. As in the proof of the above lemma, we prove the claim first for ran-
dom variables X which depend only on n edges ej, €, .. .,€en and proceed
by induction.

(i) The claim, if X and Y only depend on one edge e.
We have
(X(w) - XW)(Y(w)-YW)) 20
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since the left hand side is 0 if w(e) = w’(e) and if 1 = w(e) = w'(e) = 0, both
factors are nonnegative since X,Y are increasing, if 0 = w(e) = w'(e) = 1
both factors are non-positive since X,Y are increasing. Therefore

0 < 3 (XW) - X@))(Y(w) - Y(W)Pplw(e) = o]Ppfu(e) = o]
o,0'€{0,1}
2(EP[XY] - EP[X]EP[Y]) :

(ii) Assume the claim is known for all functions which depend on k edges
with k& < n. We claim that it holds also for X ;Y depending on n edges
€1,€2,...,€En.

Let Ay = A(ey,...ex) be the o-algebra generated by functions depending
only on the edges ex. The random variables

Xk = Ep[X|Ai], Yi = EplY | Ag]
depend only on the ey,...,e; and are increasing. By induction,
Ep[Xn—IYn—l] 2 Ep[Xn—l]Ep[Yn—I] .

By the tower property of conditional expectation, the right hand side is
Ep[X]E,[Y]. For fixed ey, ..., e,_1, we have (XY)pn—1 > X,_1Y,_; and so

EP[XY] = Ep[(XY)n—l] > Ep[Xn—lyn—l] .

(iii) Let X, Y be arbitrary and define X,, = EplX|Anl, Y = E[Y|A,]. We
know from (ii) that Ep[X,Y,] > Ep[X,]E,[Y,]. Since X, = E[X|A,] and
Y» = E[X]|A,] are martingales which are bounded in L*(2,Py), Doob’s
convergence theorem (3.5.4) implies that X,, — X and Y, — Y in £2 and
therefore E[X,] — E[X] and E[Y,] — E[Y]. By the Schwarz inequality, we
get also in £! or the £2 norm in (2, A,P,)

”XnYn_XYHI < ”(Xn_X)YnHl+”X(Yn"Y)“1
< 1 Xn = Xll2ll¥all2 + (1 X2 |Yn — Y2
<

C(”Xn - X”2 + ”Yn - Y”2) -0
where C' = max(||X||z,||Y||2) is a constant. This means E; [ X, Y,] —
E,[XY]. O
Remark. It follows immediately that if A, B are increasing events in (),
then P,[AN B] > P,[A] - P,[B].

* Example. Let T'; be families of paths in L¢ and let A4; be the event that
some path in I'; is open. Then A; are increasing events and so after applying
the inequality k times, we get

k k
Pp[_ﬂ Al 2 HPp[Ai] .
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We show now, how this inequality can be used to give an explicit bound for
the critical percolation probability p. in L2. The following corollary belongs
still to the theorem of Broadbent-Hammersley.

Corollary 5.1.5.
pe(2) < (1-A2)71)-

Proof. Given any integer N € N, define the events

Fy = {3no closed path of length < N in L4}
Gn = {3no closed path of length > N in Ld}.

We know that Fy NGy C {|C| = o}. Since Fy and Gy are both increas-
ing, the correlation inequality says Pp[FN NG N] > PplFn] - Pp[Gn]. We
deduce .

8(p) = Py[|C| = 00] = Pp[Fn N GN] 2 PplFw] - Pp[Gn] -
If (1 — p)A(2) < 1, then we know that

o

PG < Y (1-p)no(n—1)

n=N

which goes to zero for N — oo. For N large enough, we have therefore
P,[Gn] > 1/2. Since also Pp[Fn] > 0, it follows that 6, > 0, if (1-p)A(2) <
1 or p < (1 —A(2)~!) which proves the claim. O

Definition. Given A € A and w € . We say that an edge e € L¢ is pivotal
for the pair (A,w) if 1a(w) # 1a(we), where we is the unique configuration
which agrees with w except at the edge e.

Theorem 5.1.6 (Russo’s formula). Let A be an increasing event depending
only on finitely many edges of L¢. Then

d

T PAl4) = EIN(4)]

where N(A) is the number of edges which are pivotal for A.

Proof. (i) We define a new probability space.
The family of probability spaces (2, A, P,), can be embedded in one prob-
ability space

(o, 11, B(0,1]"), P) ,
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where P is the product measure dzl. Given a configuration 7 € [0, I]Ld and
p € [0, 1], we get a configuration in Q by defining 7,(e) = 1 if n(e) < p and
7p = 0 else. More generally, given p € [0, I]Ld, we get configurations 7p(e) =
1 if n(e) < p(e) and 7, = 0 else. Like this, we can define configurations
with a large class of probability measures Py, = [],p«(p(€),1 — p(e)) with
one probability space and we have

PplA] =P[np € 4].

(ii) Derivative with respect to one p(f).
Assume p and p’ differ only at an edge f such that p(f) < p'(f). Then
{mp € A} C {np € A} so that

Pp[A] —Pp[A] = Plnp € A] - Plnp € 4]
= Py € Ainp ¢ A
= (@'(f) — p(f))P,[f pivotal for 4] .

Divide both sides by (p'(f) — p(f)) and let p/(f) — p(f). This gives

0 .
WPP [A] = Pp[f pivotal for 4] .

(iii) The claim, if A depends on finitely many edges. If A depends on finitely
many edges, then P,[A] is a function of a finite set {p(f;)}, of edge
probabilities. The chain rule gives then

d = d
d_ppp[A] = ; mPP[A]lp#p,p,p,--qp)
= Z Pplfi pivotal for A]
i=1
= E,[N(4)].

(iv) The general claim.
In general, define for every finite set F C E

Pr(e) =p+ liecr)d
where 0 < p < p+ 4 < 1. Since A is increasing, we have
BptslA] 2 Por[4]
and therefore

5 (Bss[A] = Po[A]) > 2(Pp, 4] = PylA]) — 3 Pyle pivotal for 4]
ecF

as § — 0. The claim is obtained by making F larger and larger filling out
E. O
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Example. Let F = {e1,€2,...,em} C Ebea finite set in of edges.
A = {the number of open edges in F'is > k}.

An edge € € F is pivotal for A if and only if A\ {e} has exactly k—1 open
edges. We have

P,le is pivotal] = ( TZ__II >pk*1(1 —p)mk

so that by Russo’s formula

%PP[A] = Z P,[e is pivotal] = m ( Tlrcl—_ll )pk”l(l _p)m—k ‘
ecF

Since we know Pg[A] = 0, we obtain by integration

P,[A] = i ( T )p’(l -p)™ 7.

=k

Remark. If A does no more depend on finitely many edges, then PplA]
need no more be differentiable for all values of p.

Definition. The mean size of the open cluster is x(p) = E,[|C]].

Theorem 5.1.7 (Uniqueness). For p < p, the mean size of the open cluster
is finite x(p) < oo.

The proof of this theorem is quite involved and we will not give the full
argument. Let S(n,z) = {y € 7% ||z —y| = 2?:1 |z;| < n} be the ball of
radius n around z in Z¢ and let A, be the event that there exists an open
path joining the origin with some vertex in 45(n,0).

Lemma 5.1.8. (Exponential decay of radius of the open cluster) If p < pc,
there exists ¥, such that Pp[An] < e™"¥7.

Proof. Clearly, |S(n,0)] < Ca-(n+ 1)¢ with some constant Cy. Let M =
max{n | A, occurs }. By definition of p, if p < pc, then Py[M < oo] = 1.
We get

EllC]] < D EpllCl| M =n]-PplM =n]

IN

> 8(n, 0)[Pp|An]

ZCd(n +1)%e ™ < 00.

IA
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0

Proof. We are concerned with the probabilities gp(n) = Pp[A,). Sine A,
are increasing events, Russo’s formula gives

9p(n) = Ey[N(4,)]
where N(A,) is the number of pivotal edges in A,,. We have

9p(n) = Z Pyle pivotal for 4]

= Z 1—17Pp [e open and pivotal for Al

Z %P,,[A N {e pivotal for 4}

]

> %P,,[A N {e pivotal for A4}|4] - P,[A]

= X BN [ 4] Byl

BN (A) | 4] gy(m)

e

so that ()
g 1
m = pEP[N(An) I An] .

By integrating up from « to 8, we get
A1
9a(r) = go(m)exp( | SE,[N(4n) | A di)
8 .
< gs(r)exp(= [ E,[N(An) | An] di)

8
<exp(= [ E,IN(4) | 4] dp).

One needs to show then that E,[N (An) |An] grows roughly linearly when
D < pc. This is quite technical and we skip it. 0

Definition. The number of open clusters per vertex is defined as

[o e}

5(0) = BplICI ™) = 3" 2, [IC] = n

n=1

Let B, the box with side length 2n and center at the origin and let K,, be
the number of open clusters in B,,. The following proposition explains the
name of «.
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Proposition 5.1.9. In £'(0, A, P,) we have

Ky /|Bn| — s(p) .

Proof. Let Cy(x) be the connected component of the open cluster in B,
which contains z € Z%. Define I'(z) = |C(z)|~1.

[i) ZzEB,, FH(I) = K,. 2

Proof. If ¥ is an open cluster of B,,, then each vertex z € ¥ contributes
|E|! to the left hand side. Thus, each open cluster contributes 1 to the
left hand side.

(ii) (32 > 37 Zaep, () where I(z) = |C ()| .
Proof. Follows from (i) and the trivial fact I'(z) < To(z).

(iii) 157 e, T(@) = E,[T(0)] = &(p).

Proof. I'(z) are bounded random variables which have a distribution which
is invariant under the ergodic group of translations in Z9. The claim follows
from the ergodic theorem.

(iv) liminf, %ﬁ > K(p) almost everywhere.
Proof. Follows from (ii) and (iii).

(v) ZzEB(n) Ih(z) < EzEB(n) ['(z) + 3, sp, Tn(z), where z ~ Y means
that z is in the same cluster as one of the elements y € Y c Z9.

(Vi) 187 Laep, Tn(®@) < 1A Xoep, T@) + J%ll O

Remark. It is known that function (p) is continuously differentiable on
[0, 1]. Tt is even known that & and the mean size of the open cluster x(p) are
real analytic functions on the interval [0,pc). There would be much more
to say in percolation theory. We mention:

The uniqueness of the infinite open cluster:

For p > p. and if 6(p.) > 0 also for p = p,, there exists a unique infinite
open cluster,

Regularity of some functions 6(p)

For p > p,, the functions #(p), x/(p), k(p) are differentiable. In general,
&(p) is continuous from the right.

The critical probability in two dimensions is 1 /2.
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5.2 Random Jacobi matrices

Definition. A Jacobi matrix with IID potential V,(n) is a bounded self-
adjoint operator on the Hilbert space

13(z) = {(...;z1,z0,21,22...) | Z =1}

k=—00

of the form

Lou(n)= ) w(m)+V.(n)u(n) = (A +V,)(w)(n)

|m—n|=1

where V,,(n) are IID random variables in £*°. These operators are called
discrete random Schrédinger operators. We are interested in properties of
L which hold for almost all w € Q. In this section, we mostly write the
elements w of the probability space (Q, A, P) as a lower index.

Definition. A bounded linear operator L has pure point spectrum, if there
exists a countable set of eigenvalues ); with eigenfunctions ¢ such that
L¢; = Mi¢; and ¢; span the Hilbert space 13(Z). A random operator has
pure point spectrum if L, has pure point spectrum for almost all w € .

Our goal is to prove the following theorem:

Theorem 5.2.1 (Fréhlich-Spencer). Let V (n) are IID random variables with
uniform distribution on [0,1]. There exists Ao such that for A > Ag, the
operator L, = A + X - V,, has pure point spectrum for almost all w.

We will give a recent elegant proof of Aizenman-Molchanov following [94].

Definition. Given E € C \ R, define the Green function
Gu(m,n,E) =[(Ly — E) Ypun -

Let p = p, be the spectral measure of the vector eg. This measure is
defined as the functional C(R) — R, f — f(L,)o0 by f(L.)oo = E[f(L)oo)-
Define the function 4
F) = [ %)

RY—2
It is a function on the complex plane and called the Borel transform of the
measure 4. An important role will play its derivative

o [ dp(N)
F(z)‘/m(y—zw
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Definition. Given any Jacobi matrix L, let L, be the operator L + aFp,
where P, is the projection onto the one-dimensional space spanned by d¢.
One calls L, a rank-one perturbation of L.

Theorem 5.2.2 (Integral formula of Javrjan-Kotani). The average over all
specral measures du, is the Lebesgue measure:

/d,uada:dE.
R

Proof. The second resolvent formula gives
(Lo —2) ' = (L—-2)"" = ~a(La — 2) Py (L —2)" .
Looking at 00 entry of this matrix identity, we obtain
Fo(2) — F(2) = —aFu(2)F(2)
which gives, when solved for Fy, the Aronzajn-Krein formula

F(z)

Fale) = Tar ) -

We have to show that for any continuous function f : C — C

[ [ 5@ dua(a) da= [ 1) aB(e)

R /R

and it is enough to verify this for the dense set of functions
{fo(z)=(z—2)7' — (@ +1)7 [c€ C\R} .

Contour integration in the upper half plane gives fR f2(z) dz = 0 for
Im(z) < 0 and 27 for Im(2) > 0. On the other hand

/ F(2)dba(z) = Fa(z) — Fa(—i)

which is by the Aronzajn-Krain formula equal to

1 1
hs(a) := a+ F(z)™1! h a+ F(-i)-1’

Now, if +Im(z) > 0, then +ImF(z) > 0 so that £ImF(2)™' < 0. This
means that h,(a) has either two poles in the lower half plane if Im(z) <0
or one in each half plane if Im(z) > 0. Contour integration in the upper
half plane (now with o) implies that [ h.(a) do = 0 for Im(2) < 0 and
274 for Im(z) > 0. O
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In theorem (2.12.2), we have seen that any Borel measure (1 on the real line
has a unique Lebesgue decomposition dy = dpge + Aising = dlige + dptge +
dpipp. The function F is related to this decomposition in the following way:

Propeosition 5.2.3. (Facts about Borel transform) For € — 0, the measures
7' ImF(E + ie) dE converges weakly to p.

ditsing({E | ImF(E +i0) = 00 }) = 1,

du({Eo}) = lime_o ImF(Ep + de)e,

ditac(E) = 77 ImF(E + i0) dE.

Definition. Define for a # 0 the sets

= {ze€R|F(z+i0)=-a"!, F/(z) =0 }
{zeR|F(z+i0)=-a™!, F/(z) <0}
{r €eR|ImF(z+1i0)#0}

Sa
Py
L

Lemma 5.2.4. (Aronzajn-Donoghue) The set P, is the set of eigenvalues of
Lqa. One has (dpa)sc(Sa) = 1 and (dpta)ac(L) = 1. The sets P,,S,,L are
mutually disjoint.

Proof. If F(E +i0) = —1/a, then
lim e InFo(E + ie) = (o’ F'(E))
since F(E+ie) = —1/a+ieF'(z)+o(e) if F'(E) < 0o and e~ 'Im(1+aF) —
oo if F'(E) = oo which means €|l + aF|~! — 0 and since F — —1/a, one
gets €| F/(1 4+ aF)| — 0.
The theorem of de la Vallée Poussin (see [88]) states that the set
{E| [Fa(E +10)] = 00 }

has full (dpa)sing measure. Because F, = F/(1 + aF), we know that
|Fa(E +10)| = oo is equivalent to F(E +140) = —1/a. O

The following criterion of Simon-Wolff [96] will be important. In the case of
IID potentials with absolutely continuous distribution, a spectral averaging
argument will then lead to pure point spectrum also for o = 0.
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Theorem 5.2.5 (Simon-Wolff criterion). For any interval [a,b] C R, the
random operator L has pure point spectrum if

F'(E) < >

for almost almost all E € [a, b].

Proof. By hypothesis, the Lebesgue measure of S = {E | F/(E) =00 } is
zero. This means by the integral formula that duo(S) = 0 for almost all c.
The Aronzajn-Donoghue lemma (5.2.4) implies

ta(Se Na,b]) = pa(LN{a,b]) =0

so that u, has only point spectrum. ]

Lemma 5.2.6. (Formula of Simon-Wolff) For each E € R, the sum
S ez (L — E — i€)g,1|? increases monotonically as € N\, 0 and converges
point wise to F'(E).

Proof. For € > 0, we have

Y IL-E-iogl® = II(L—E—ie)~ bl
nez
= |(L—-E—ie)™ (L — E +ie) Yool
_ / du(z)
rR(z—-EP+¢€
from which the monotonicity and the limit follow. a

Lemma 5.2.7. There exists a constant C, such that for all a,8 € C

1 1
/ lz — o3|z — g|71/? d:vZC/ lz — B~Y/? dx .
0 0

Proof. We can assume without loss of generality that a € [0, 1], because
replacing a general o € C with the nearest point in [0, 1] only decreases the
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left hand side. Because the symmetry a — 1 — « leaves the claim invariant,
we can also assume that a € [0,1/2]. But then

1 1
- 1 -
| le-atte—prtra Gy [ g ae
0 3/4

The function
h(g) — — Japalz =BT dz
Jo |z~ a2z - B-1/2 da

is non-zero, continuous and satisfies h(co) = 1/4. Therefore

C:= érelg:h(ﬁ) >0.

The next lemma is an estimate for the free Laplacian.

Lemma 5.2.8. Let f, g € [°°(Z) be nonnegative and let 0 < a < (2d)~1.
(1-ad)f<g=f<(1-ad)7yg.

[(1—aA)™ ]y < (2da)l~H(1 — 2da) L .

Proof. Since ||A|| < 2d, we can write (1 — aA)™ = Y.>°_ (aA)™ which is
preserving positivity. Since [(aA)™];; = 0 for m < |i — j| we have

(@)™ = Y [(eA);; < > (2da)™.
m=[i—j| m=li—j|

We come now to the proof of theorem (5.2.1):

Proof. In order to prove theorem (5.2.1), we have by Simon-Wolff only to
show that F'(E) < oo for almost all E. This will be achieved by proving
E[F'(E)'/4] < co. By the formula of Simon-Wolff, we have therefore to
show that

u 7n.0. 2)12)4 < 0o .
iEEE[(;'G( ,0,2)H) 4] <

Since

16, 0,2))M* < 371G(n,0,2)[2,
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we have only to control the later the term. Define g.(n) = G(n,0, z) and
k,(n) = E[|g-(n)|"/?]. The aim is now to give an estimate for

> k.(n)

nez

which holds uniformly for Im(z) # 0.

(i)
E[|AV(n) - z|1/2|gz(n)|1/2] <dno+ Z k.(n+3) -
[il=1

Proof. (L — 2)g.(n) = dno means

WV (n) = 2)g.(n) = 6o — 3 g:(n+3) -

l7]=1
Jensen’s inequality gives
E[AV (n) — 2[/2g:(n)| /2] < bno + D ka(n+13) -
l3l=1
(ii)
E[IAV () — 2["/?|g.(n)["/?] = CX'/?k(n) .

Proof. We can write g;(n) = A/(AV(n) + B), where A, B are functions of
{V()}in. The independent random variables V (k) can be realized over
the probability space Q = [0, 1)% = [,z Q(k). We average now AV (n) —
z|1/2|g.(n)|/? over (n) and use an elementary integral estimate:

|xv — 2|1/2| A}/ 1 /1 - -1—
dv = |A]M? — 2271t BA"17Y2 ¢
/n(n) [\ + B|1/2 v |A| A v — 227 v+ | v

1
> C|A|1/2/ v+ BATL Y2 dv
0

- one /1 A/ + B2
0
= E[gz(n)l/zl = k;(n) .
(iii)
ky(n) < (CXV?)7? (Z ko (n+3) +5n0) .

l31=1
Proof. Follows directly from (i) and (ii).
(iv)
(1 — CAY2A)k < bno -
Proof. Rewriting (iii).
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(v) Define a = CA'/2,

kz(n) < o' (2d/a)"l(1 - 2d/a)"! .

Proof. For Im(2) # 0, we have k, € 1°°(Z). From lemma (5.2.8) and (iv),
we have

2,1
3

(vi) For A > 4C~2, we get a uniform bound for Yon kz(n).

Proof. Since CA'/2 < 1/2, we get the estimate from (v).

(vii) Pure point spectrum.

Proof. By Simon-Wolff, we have pure point spectrum for L, for almost all
a. Because the set of random operators of L, and Lg coincide on a set of
measure > 1 — 2a, we get also pure point spectrum of L, for almost all
w. a

k(n) < a7 [(1 = AJa) Yon < a-l(g)lnl(l _

9.3 Estimation theory

Estimation theory is a branch of mathematical statistics. The aim is to
estimate continuous or discrete parameters for models in an optimal way.
This leads to extremization problems. We start with some terminology.

Definition. A collection ({2, 4, Py) of probability spaces is called a statis-
tical model. If X is a random variable, its expectation with respect to the
measure Py is denoted by Eq[X], its variance is Varg[X] = Eo[(X —E([X])?.
If X is continuous, then its probability density function is denoted by fj.
In that case one has of course Eg[X] = [, fo(z) dz. The parameters 6 are

taken from a parameter space ©, which is assumed to be a subset of R or
RE.

Definition. A probability distribution y = p(6) df on (0, B) is called an
a priori distribution on © C R. It allows to define the global expectation
E[X] = [, Eo[X] dyu(6).

Definition. Given n independent and identically distributed random vari-
ables X1,..., X, on the probability space (£, A, Pg), we want to estimate
a quantity g(6) using an estimator T'(w) = t(X;(w),. .., X, (w)).

Example. If the quantity g(f) = Eg[X;] is the expectation of the ran-
dom variables, we can look at the estimator T'(w) = %E;‘zl X;i(w), the
arithmetic mean. The arithmetic mean is natural because for any data
T1,...,%n, the function f(z) = Y7 | (z; — x)? is minimized by the arith-
metic mean of the data.

Example. We can also take the estimator 7'(w) which is the median of
X1(w), ..., Xn(w). The median is a natural quantity because the function
f(z) = 37, |z; — z| is minimized by the median. Proof. la—z|+]|b—z|=
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b — a| + C(z), where C(z) is zero if a < = < b and Clz) =z—bif
z>band D(z) =a—zifz < a. If n =2m + 1 is odd, we have flz) =
PR LIRS SEEEIE DI, C(z5)+Y 4, <z, D(x;) which is minimized for
T = Tm. Ifn = 2m, we have f(z) = 3_7_, |Ti = Tt 1-il + 2, >y C(E3)+
2z <zmos D(z;) which is minimized for z € [Tm, Tm1)-
Example. Define the bias of an estimator 7' as

B(6) = Bo[T| = Eq[T] — 9(6) -

The bias is also called the systematic error. If the bias is zero, the estimator
is called unbiased. With an a priori distribution on ©, one can define the
global error B(T) = [ B(6) du(f).

Proposition 5.3.1. A linear estimator T'(w) = 3_7_; & X;(w) with Yo =
1 is unbiased for the estimator g(6) = Eq[X;].

Proof. E[T] = 3_7_; aiEe[Xi] = Eg[Xi]. O

Proposition 5.3.2. For g(6) = Varg[X;] and fixed mean m, the estimator
T =37 ;(Xi —m)? is unbiased. If the mean is unknown, the estimator

T=_1-%7" (Xi—X)? with X = 3 37, X; is unbiased.

Proof. a) Ee[T] = £ Y7, (Xi — m)? = Vare[T] = g(6).

b) For T = 1 3°,(X; — X;)?, we get

n

1
— 2
Eo[T] = Eo[X;]—Eo[— ZXin]
z’]
1 n(n—1
— Bofx? - Lm0 Y
_ 1 aq n-—1 12
= (- DEelx?] - P ElX)
-1
= n Varg [X,] .
n
Therefore n/(n — 1)T is the correct unbiased estimate. O

Remark. Part b) is the reason, why statisticians often take the average of
T

oDy (x;—7)? as an estimate for the variance of n data points z; with mean
77 if the actual mean value m is not known.
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Definition. The expectation of the quadratic estimation error
Errg[T) = Eo[(T — 9(6))?]

is called the risk function or the mean square error of the estimator T'. It
measures the estimator performance. We have

Erry [T] = Vary [T] + By [T] ,

where Bg|[T] is the bias.

Example. If T is unbiased, then Errg[T] = Varg[T.

Example. The arithmetic mean is the ”best linear unbiased estimator”.
Proof. With T' = Y, a; X;, where ), o; = 1, the risk function is

Erry(T] = Varg[T] = Z a?Varg[X;] .

It is by Lagrange minimal for a; = 1/n.

Definition. For continuous random variables, the maximum likelihood func-

tion t(z1,...,Z,) is defined as the maximum of § — Lg(zy,...,2Zn) =
fo(z1)----- fo(x). The maximum likelihood estimator is the random vari-
able

T(w)= (X1 (w), .. » Xn(W)) -

For discrete random variables, Lg(z1, . . ., Zn) would be replaced by Pg[X; =
$1,...,Xn=1!n]. ‘

One also looks at the maximum a posteriori estimator, which is the maxi-
mum of

GHLo(iL‘l,...,xn)=fg(.’L'1) """ fg(:cn)p(G) ’
where p() df was the a priori distribution on ©.

Definition. The minimax principle is the aim to find
minmax R(6,T) .
T 8
The Bayes principle is the aim to find
min f (R(8,T) du(6) .
T Je

Example. Assume fp(z) = %e"z”e'. The maximum likelihood function

LIPS S EN

L9($13"'7:En)=-é;e 3

is maximal when 3 |z; — 0| is minimal which means that t(zi,...,Zn) is
the median of the data z1,...,Zn.
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Example. Assume fo(z) = g=e~? /! is the probability density of the Pois-
son distribution. The maximal likelihood function

GZi log(8)x; —nb

le(mlv"',xn)= $1|mn|
is maximal for § = Y, zi/n.

Example. The maximum likelihood estimator for 0 = (m 02) for Gaussian
5% has the maximum

distributed random variables fo(z) =
likelihood function maximized for

(1?1, . .’l?n)——( qu z _T)z)'

1

21rcr

Definition. Define the Fisher information of a random variable X with
density fo as

0= | (%%)%(z) dz .

If 9 is a vector, one defines the Fisher information matrix

fo. %o,
Li; 8) = f2 L fodz
Lemma 5.3.3. I(0) = Varg[%].
Proof. E = [, fodz = 0 so that

Varo[%] - Ee[(%m .

Lemma 5.3.4. 1(8) = —Eg[(log(fs)"]-

Proof. Integration by parts gives:

E[log(fe)"] = /log(fe)"fo de = — /log(fe)'fé dr = — /(fé/fa)Qfe dr .

|
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Definition. The score function for a continuous random variable is defined
as the logarithmic derivative pg = £/ f5. One has I (8) = Eqlp3] = Varg|ps).

Example If X is a Gaussian random variable, the score function Po =

f'(6)/f(8) = —(z — m)/(o?) is linear and has variance 1. The Fisher in-
formation I is 1/0%. We see that Var[X] = 1/I. This is a special case
n=1,T = X,0 = m of the following bound:

Theorem 5.3.5 (Rao-Cramer inequality).
(1+ B'(6))?

‘/ >
EI T >

Proof. 1)-0 + B(6) = Eg[T| = [t(z1,...,2,)Le(zy,... yTn) dZy -« - dTy,.
2)

1+B/(0) = /t(.’L‘l,...,.’Iin)Llo(.’El,...’zn) dxldxn

Ly(z1,...,z5)
= /t(.’l)l, e ,.’L'n)m dﬁEl d.’l!n

Ly
Ly
3 1= fLa(Jfl,u-,iBn) dzxy - - - dz, implies

- /Lg(xl,...,mn)/Lg(wl,...,wn) — E[L)/Le] .

4) Using 3) and 2)

Cov(T,Ly/Ls] = E[TL}/Lg) -
1+ B'(6).

= Eo[T2

5)

(1+ B'(9))?

I

L/
Cov?[T, =22
r. 2

Ly
Varg[T|Varg [L—]

IA

)
f(z)

)l

= Varg[T] nI (0 ,



5.3. Estimation theory 297

where we used 4), the lemma and

Ly/Lo =) fo(z:)/ fola:) -

i=1

O

Definition. Closely related to the Fisher information is the already defined
Shannon entropy of a random variable X:

56) =~ [ fotogtfo) do
as well as the power entropy

1
N(0) = 2_71'6:625(0) .

Theorem 5.3.6 (Information Inequalities). If X,Y are independent random
variables then the following inequalities hold:

a) Fisher information inequality: I}, > Ix' + Iy

b) Power entropy inequality: Nx.y > Nx + Ny.

c¢) Uncertainty property: Ix Nx > 1.

In all cases, equality holds if and only if the random variables are Gaussian.

Proof. a) Ix,y < c?Ix + (1 — ¢)?Iy is proven using the Jensen inequal-
ity (2.5.1). Take then ¢ = Iy /(Ix + Iy). :
b) and c) are exercises. O

Theorem 5.3.7 (Rao-Cramer bound). A random variable X with mean m
and variance o2 satisfies: Ix > 1/02. Equality holds if and only if X is the
Normal distribution.

Proof. This is a special case of Rao-Cramer inequality, where 8 is fixed,
n = 1. The bias is automatically zero. A direct computation giving also
uniqueness: E{(aX + b)p(X)] = [(az +b)f'(z) dz = —a [ f(z) dz = —a
implies

0 < E[(p(X)+ (X ~m)/a%)?
= E[(p(X)’] + 2E[(X ~ m)p(X)]/0® + E[(X —m)*/o*]
< Ix —2/0*+ 102 .

Equality holds if and only if px is linear, that is if X is normal. O
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We see that the normal distribution has the smallest Fisher information
among all distributions with the same variance o2.

5.4 Vlasov dynamics

Vlasov dynamics generalizes Hamiltonian n-body particle dynamics. It deals
with the evolution of the law P* of a discrete random vector X®. If P! is
a discrete measure located on finitely many points, then it is the usual
dynamics of n bodies which attract or repel each other. In general, the
stochastic process X* describes the evolution of densities or the evolution
of surfaces. It is an important feature of Vlasov theory that while the ran-
dom variables X* stay smooth, their laws P* can develop singularities. This
can be useful to model shocks. Due to the overlap of this section with geom-
etry and dynamics, the notation slightly changes in this section. We write
X* for the stochastic process for example and not X; as before.

Definition. Let 2 = M be a 2p-dimensional Euclidean space or torus with
a probability measure m and let N be an Euclidean space of dimension 2q.
Given a potential V : R? — R, the Vlasov flow X* = (f,¢'): M — N is
defined by the differential equation

f=gi=- /M VV(f(w) - f(n)) dm(n) .

These equations are called the Hamiltonian equations of the Vlasov flow.
We can interpret X* as a vector-valued stochastic process on the probability
space (M, A, m). The probability space (M, A, m) labels the particles which
move on the target space N.

Example. If p = 0 and M is a finite set = {w1,...,w,}, then X describes
the evolution of n particles (fi,9;) = X(w;). Vlasov dynamics is therefore
a generalization of n-body dynamics. For example, if

lea Z2a

then VV(z) = = and the Vlasov Hamiltonian system

f=9.0) == [ 1)~ fn) dmn
is equivalent to the n-body evolutlon
fi = g

= —Z(fi - fi)-

In a center of mass coordinate system where Y. | fi(z) = 0, this simplifies
to a system of coupled harmonic oscillators

d2
ﬁfi(x) = —fi(z) .
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Example. If N = M = R? and m is a measure, then the process X*
describes a volume-preserving deformation of the plane M. In other words,
X* is a one-parameter family of volume-preserving diffeomorphisms in the
plane.

Figure. The situation at time t =
0.1. The two particles have evolved
in the phase space N. Each point
moves as “test particle” in the
force field of the 2 particles. Even
so the 2 body problem is inte-
grable, its periodic motion acts like
a "mizer” for the complicated evo-
lution of the test particles.

Figure. An ezxample with M =
N = R?, where the measure m
is located on 2 points. The Viasov
evolution describes a deformation
of the plane. The situation 1s
shown at time t = 0. The coor-
dinates (x,y) describe the position
and the speed of the particles.

Example. Let M = N = R? and assume that the measure m has its support
on a smooth closed curve C. The process X is again a volume-preserving
deformation of the plane. It describes the evolution of a continuum of par-
ticles on the curve. Dynamically, it .can for example describe the evolution
of a curve where each part of the curve interacts with each other part. The
picture sequence below shows the evolution of a particle gas with support
on a closed curve in phase space. The interaction potential is V(z) = e™>.
Because the curve at time t is the image of the diffeomorphism X?, it
will never have self intersections. The curvature of the curve is expected
to grow exponentially at many points. The deformation transformation
Xt = (f,g*) satisfies the differential equation

i )
a’ =Y
d
—aq = ~(f(w)=f(m)
7 /M e dm(n) .

If r(s), s € [0,1] is the parameterization of the curve C so that m(r[a,b]) =
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(b — a), then the equations are

@) = ¢

1
gt = ~(f @)= £ (r(s)))
o (z) /0 e ds.

The evolved curve C* at time ¢ is parameterized by s — (f(r(s)), gt(r(s))).

O C

Figure. The support Figure. The support Figure. The support
of the measure PO on  of the measure P9* on  of the measure P12 on
N=R2. N:]R2‘ N=R2.

o . o

Example. If X* is a stochastic process on (2 = M, A, m) with takes values
in N, then P* is a probability measure on N defined by P![A] = m(X 1 A).
It is called the push-forward measure or law of the random vector X. The
measure P? is a measure in the phase space N. The Vlasov evolution defines
a family of probability spaces (N, B, P?). The spatial particle density p is
the law of the random variable z(z,y) = z.

Example. Assume the measure P? is located on a curve 7(s) = (s, sin(s))
and assume that there is no particle interaction at all: V = 0. Then P? is
supported on a curve (s + sin(s), sin(s)). While the spatial particle density
has initially a smooth density /1 + cos(s)?, it becomes discontinuous after
some time.
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Figure. Already for the free evo-
lution of particles on a curve in
phase space, the spatial particle
density can become non-smooth
after some time.

Example. In the case of the quadratic potential V(z) = z? /2 assume m has
a density p(z,y) = e~="~2¥" then P! has the density p'(z,y) = f(zcos(t)+
ysin(t), —zsin(t) + ycos(t)). To get from this density in the phase space,
the spatial density of particles, we have to do integrate y out and do a
conditional expectation.

Lemma 5.4.1. (Maxwell) If X* = (ft, g*) is a solution of the Vlasov Hamil-
tonian flow, then the law Pt = (X*t)*m satisfies the Vlasov equation

Pi(z,y) +y- VP (z,y) - W(z) - V,P*(z,y) =0

with W(z) = [,, V.V (z — 2') - PY(z,y)) dy/dz’.

Proof. We have [VV(f(w) — f(n)) dm(n) = W(f(w)). Given ‘a smooth
function h on N of compact support, we calculate

L= / h(z,y) L PY(z,y) dedy
N dt

as follows:
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L = Edzfvh(x,y)Pt(m,y) dzdy
- 2 /M HS gt dm)
= [ Vbl 00 gt 0 drit)
- [ Vs, [ 9V(5(0) - 1)) dmie) dmie)
M M
= [ Veha,vuPa,y) dady - [ P 9yhte.)
N N v

/ VV(z ~z')Pi(2',y') dz’dy dzdy
N, _

Py st b
P AN

N e r A FL T ,ib-i; RIETIS N B R P A J?hf!}.li‘{;f‘
f..,=.--.‘];Vh(w,y)Vz.P‘(x,,y)y»dmdyv».:; I
+/ h(m,;y)'W(zf)v--Vy-P-t.(x,y.) dody ..o v e

N B T T

0

Remark. The Vlasov equation is an example of an integro-differential equa-
tion. The right hand side is an integral. In a short hand notavion, the Vlasov
equation fs S e e S DS
AT Py P = W(x) Py=0, ., 1o
where' W =V V"% P is'the convolution of the force V.Viwith P o
Example. V(z) = 0. Particles move freely. The Vlasov equation becomes
the transport equation P(z,yt) + 3 - ViPt(z,y) = 0 which isin‘éne di-
mensions a partial differential equation u, + yuz = 0. It has solutions
u(t, z,y) = ufu,z + ty). Restricting this function to Y = z gives the Burg-
ers equation u; + zu, = 0.

Example. For a quadratic potential V(z) = z2, the Hamilton equations are
f@r =@~ [ 1) dmin)

In center-of-mass-coordinates f = f — E[f], the system is a decoupled
system of a,continuum of oscillators f =.g,§ = —f with solutions, .

£(2) = £(0) cosl(t) + g(0) sini(t), gt & = F(0Ysini(t) + G(0) cos(t) .*
The evolution for the density P is the partial differential equation

written in short hand as u; +y-u, —z-uy = 0, which has the explicit solution
P(z,y) = P%cos(t)z + sin(t)y, — sin(t)z + cos(t)y). It is an example: of a
Hamilton-Jacebi equation.
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Example. On any Riemannian manifeld with, Laplace-Beltrami operator
A, there are natpral potentlals the Poxsson equatlon Do =pis sleed by

¢ V xpy where * is the convolutlon Thxs deﬁnes Newton potentlals on
‘the mamfold Here are some examples : v .

“N-R Viz) = £l

e N=T: V(z) = 2&r==2l

(e N=8%V(z)= log(l z-z).
{oe N = R? V(z) = 5 log |a:|
o N=R3V(z)= g1

Iz'l
CN=R'V Ve - i

For example, for N = R, the Laplacxan A f = f” is the second der1va-
tive. It is dlagonal in Fourier space: Af (k) = —k? f, whete'k € R. From
Deltaf(k) = —k*f = p(k) we get f(k) (l/kz) (k),.so that f =V xp,
where V is the function which has the Fourier transform V(k) -1 / k2
But V(z) = |z|/2 has this Fourier transform: - EOTURRTEE B TURFE RO

o0 . o
l l —1k:v 1
dz'- -
,[m 2 . k2D

Also for N = T, the Laplacian A f = f" is dlagonal'ianohrierv's‘f)‘ac'e. Tt
is. the 27-periodic function V(z) = z(2m — a;) / (47r),awhich has the Fourier
series, V (k) = —1/k2. . RN =

Fo’ri general N = R’?-, see for example_ [58).

’Remark The functlon Gy(z) = (:z: y) is also called the Gree{nffunctpon
of the Laplacian. Because Newton potentials V are not smooth, establishing
global existence for the Vlasov dynamics is not easy but it has been done
in many cases [30] The potential |z| models galaxy motion and appears in
plasma dynamics [90, 65, 82].

Lemma 5.4.2. (Gronwall) If a function u satisfies u’ (t) < |g(t)|u(t) for all
0 <t < T, then u(t) < u(0) exp(fot lg(s)| ds) for 0 <t < T.

Proof. Integrating the assumption gives u(t) < u(0) + fo g(s)u(s) ds. The
function A(t) satisfying the d1fferent1al equation h’(t) = lg(t)lu(t) satisfies
h'(t ) < |g(#)|A(t). This leads to h(t ) < h(0) exp(o(0 lg(s)| ds) so that u(t) <

( exp( fo lg(s)| ds) ThlS proof for real valued functions [20] geherahzes

to the cage, where u’(a:) evolves in a functlon space. One just can_ apply the
same proof for any fixed z. m|
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Theorem 5.4.3 (Batt-Neunzert-Brown-Hepp-Dobrushin). If V.V is
bounded and globally Lipshitz continuous, then the Hamiltonian Vlasov
flow has a unique global solution X* and consequently, the Vlasov equa-
tion has a unique and global solution P! in the space of measures. If V and
PO are smooth, then P! is piecewise smooth.

Proof. The Hamiltonian differential equation for X = (f,g) evolves on on
the complete metric space of all continuous maps from M to N. The dis-
tance is d(X,Y) = sup,, ¢ (X (w), Y (w)), where d is the distance in N.

We have to show that the differential equation f = g and § = G(f) =
— [y V=V (f(w) = f(n)) dm(n) in C(M, N) has a unique solution: because
of Lipshitz continuity :

IG(f) = G(f)loo < 21D(VaV)lloo - IIf = £lleo
the standard Piccard existence theorem for differential equations assures

local existence of solutions.

The Gronwall’s lemma assures that || X (w)|| can not grow faster than ex-
ponentially. This gives the global existence. O

Remark. If m is a point measure supported on finitely many points, then
one could also invok the global existence theorem for differential equations.
For smooth potentials, the dynamics depends continuously on the measure
m. One could approximate a smooth measure m by point measures.

Definition. The evolution of DX at a point w € M is called the linearized
Vlasov flow. It is the differential equation

Df(w) =~ /M V2V (f(w) - f(n)) dm(n)Df(w) =: B(f)Df(w)

and we can write it as a first order differential equation

or - 3¢]
B [fM—VzV(f(w())—f(n)) dm(n) 3“”
- A(f‘)[_f;] .

Remark. The rank of the matrix DXt(w) stays constant. Df*(w) is a lin-
ear combination of Df°(w) and Dg%(w). Critical points of ft can only
appear for w, where Df%(w),Df%w) are linearly dependent. More gen-
erally Yi(t) = {w € M | DX*(w) has rank 2¢ — k = dim(N) — k} is time
independent. The set Y; contains {w | D(f)}(w) = AD(g)(w), ) € RU{oc}}.



5.4. Vlasov dynamics 305

Definition. The random variable

Aw) = umﬁmg(nmxt(w))m € [0,0)

is called the maximal Lyapunov exponent of the SL(2q, R)-cocycle A =
A(f*) along an orbit X* = (f*, ¢*) of the Vlasov flow. The Lyapunov expo-
nent could be infinite. Differentiation of Df = B(f*)f* at a critical point
Wt gives D2ft(w?) = B(ft)D?f*(w"). The eigenvalues A; of the Hessian
D?f satisfy A; = B(f*)A;.

Definition. Time independent solutions of the Vlasov equation are called
equilibrium measures or stationary solutions.

Definition. One can construct some of them with a Maxwellian ansatz
: 2
P(ay) = Con(-B + [ Vie-2)Q) ) = S0)Q)

The constant C is chosen such that [p. S(y) dy = 1. These measures are
called Bernstein-Green-Kruskal (BGK) modes.

Proposition 5.4.4. If Q : N — R satisfies the integral equation
Q(zx) = exp(— /Rd BV (z — 2)Q(z")) dz’ = exp(—BV x Q(z))

then the Maxwellian distribution P(z,y) = S(y)Q(z) is an equilibrium
solution of the Vlasov equation to the potential V.

Proof.

yVi P

yS(y)Qx(2)
yS0)(-PQG) [ V.V(e - Q) o)

and
/ V.V (z — ')V, P(z,y)P(z',y) dz'dy’
N
= Q@(-SW) [ VaV (e -2)QE) do'

gives yV,P(z,y) = [y VaV(z — ')V, P(z, y)P(z',y') dz’ dy'. O
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5.5 Multidimensional distributions

Random variables which are vector-valued can be treated in an analogous
way as random variables. One often adds the'term ” multivariate” to indi-
cate that one has multiple dimensions.

Definition, A random vector is & vector-valued random. variable, It s in
L7 1 each coordinate is in L7 The expectation E[X] of a random vector
X = (Xy,...,Xq) is the vector (E[Xy],...,E[X4]), the variance is the
Véétor'(Var[Xl‘],...,Var[Xd]);‘ o o o ( .

)

Example. The random vector X = (z°,y%, 2°) on the unit cube 2 = [0,1]3,
with Lebesgue measure P has the expectation E[X] = (1/4,1/5,1,

Definition. Assume X = (X,..., X4) is a random vector in £, The law
of the random; vector; X is a.measure 4 on R with compact support: After;
some scaling and translation we can assume that ¢ be a bounded Borel
measure on the unit cube I¢ = [0, 1]¢. :

¥
i

Definition. The multi-dimensignal distribution function of a random vector
X = (le' x 7Xd) is defined as 15‘/'&1 Vol D g e ey dE

Fx(t) = Fix,,.,x(t,ta) =P[X1 < t1,..., Xq < tg] .

For a continuous random variable, there is g density f x(t), satisfying S

i ta
_ .Fx(t):/ cie | f(81y .y 84) d8y ~"—1--ds'd.

The multi-dimensional distribution futi¢tion is also- called multivariate dis-:
tribution function. B T T T R AT H U VS T

Definition. We use in this section the multi-index notation z" = HL] x
Denote by u, = [, 7¢ 2" dy the n’th moment of x. If X is a random
vector, with law p, call p,(X) the n’th moment of X. It is equal to'
E[X"] = E[X]" X3?--- X}4]. We call the map n € N® - 4, the moment
configuration or, if d = 1, the moment sequence. “We will tacitly assume
tn = 0, if at least one coordinate n;:in n = (ny,...,ng) is negative.

If X is a continucus rahdom \iectbr!fche moéments satisfy

Rd
which is a short hand notation for -
/ f x4 ZnE flay, o zq) doy - o dag
-0 —-00
.b\‘w,;"-.z "‘v..\.l '

* N { Y TN, oyt 7 Voo . M y fvre e
Cul MV O Ty T ORI AL RN ATRRE DL
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Example. Then = (7, 3,4)'th moment of the random vector X = (=, 9%, 2%)

is
E[XP X52X] = Elz?y'22%] = -

221320 °
The random vector X is contmuous and has ‘the probability density

'x—2/3 —3/4 —4/5
f(.’L‘,y,Z)=( 3 )( 4 )( 5

Remark. As in one dimension, one can define a mult1d1mens1onal moment
generating function. .. ot sl LT e

Mx(t) = E[etx] = E[étl-xlet2:X2‘= . .e‘taxd’]x st

which containsall the information about the moments-because of the multi-
dimensional moment formula

where the n’th derxvatlve is deﬁned a,s

d S gz e ‘1‘1,4 R
E{,;f( ) ax"‘ ax”’ ndf(xla---axd) .

Example. The random varlable X = (a: \/_ 2/ 3) ha.s the moment gener-
ating functlon

M(s t, u) / / / s ttVIus " drdyd;

Cles1y242et-1) 64342 2u+u)
I IU, 2. .,u3 : ‘

Beca,use the components X1,X2, X3 in: thxs example were: mdependent ran-
dom variables, the moment generating function is of the form

M(s)M(t)M(u) ,

where the factors are the one—dlmensmnal moments of the one—dlmensmnal
randomvanablele,Xg and X3 e it

Deﬁmtlon Let €; be the standard basls in, Zd Define the partlal dlﬁ'e;ence
(Ai@)n = @n—e;, — an on configurations and write AF = IL A . Unlike the
usual convention, we take a particular 31gn conventlon for A This allows
s to avoid many negatlve signs in this sectlon By mductlon in Ez_ N,
one proves the relation

s [ 6D

using z"— ¢k (1—z)k =z"k(1-g)* = z"~*~k(1=z)**+* . Toimprove read-
n d n;

ablhty, \vze also use notation like & n = Hz—1 ;’: or|{ . |= | | ki
T / \.'

th h/fl;l\“' k,(qup“‘ BRI ETTIITIR, § ey
d’ : Y 11
meann—> teensetan .00
f, %:1 750 i 2:’“1%0 z:k¢~0<;.»xr RIS 'r?o«l‘* Rttt m;}:}m iy
Z_

RS RT TR R A

RIS o teeon gL (U e ihion sl ssn s o
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Definition. Given a continuous function f : I¢ — R. For n € N¢,n; > 0 we
define the higher dimensional Bernstein polynomials

N n e
Bn(f)(w)=kz=of(k—;,...,ﬁ)( v)ea-art,

Lemma 5.5.1. (Multidimensional Bernstein) In the uniform topology in
C(I%), we have B,(f) — f if n — o0.

Proof. By the Weierstrass theorem, multi-dimensional polynomials are dense
in C(I9) as they separate points in C(I?). It is therefore enough to prove
the claim for f(z) =™ = H;’!:l z". Because By (y™)(z) is the product of
one dimensional Bernstein polynomials

d
Ba(y™)(@) = [ ] Bn. (™) (1) ,
i=1
the claim follows from the result corollary (2.6.2) in one dimensions. O3

Remark. Hildebrandt and Schoenberg refer for the proof of lemma, (5.5.1)
to Bernstein’s proof in one dimension. While a higher dimensional adapta-
tion of the probabilistic proof could be done involving a stochastic process
in Z¢ with drift z; in the i’th direction, the factorization argument is more
elegant.

Theorem 5.5.2 (Hausdorff,Hildebrandt-Schoenberg). There is a bijection
between signed bounded Borel measures 4 on [0,1]¢ and configurations pin
for which there exists a constant C such that

anl( f )(Akll’)n| <C,VneN’. | (5.2)
k=0

A configuration ., belongs to a positive measure if and only if additionally
to (5.2) one has (AFu), > 0 for all k,n € N

Proof. (i) Because by lemma (5.5.1), polynomials are dense in C(I ), there
exists a unique solution to the moment problem. We show now existence
of a measure x under condition (5.2). For a measures y, define for n € N¢
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the atomic measures p{™ on I¢ which have weights ( Z ) (A*u), on the

Hf___l(ni + 1) points (2.;1_;:112., ey 1‘4;:7'“4) € I% with 0 < k; < n;. Because
m_y,,(n) — = n n—k meAk
[aman@ = ¥ (%) Eom @,
k=0
~(n\ n—kim -k k
= [ 7)ED et - 0" duta)
Idk:O n
- n k m .k n—k
= [ 2(7)Erera- ot dute)
Idk:O n

= [ Bty o) [ o duto)

we know that any signed measure p which is an accumulation point of (™,
where n; — oo solves the moment problem. The condition (5.2) implies that
the variation of the measures (™ is bounded. By Alaoglu’s theorem, there
exists an accumulation point u.

(ii) The left hand side of (5.2) is the variation || p(™|| of the measure p(™.
Because by (i) u(™ — p, and p has finite variation, there exists a constant
C such that ||u(™|| < C for all n. This establishes (5.2).

(iii) We see that if (AFp), > 0 for all k, then the measures p™) are all
positive and therefore also the measure p.

(iv) If p is a positive measure, then by (5.1)
n n—
( k )(Ak,u)n= ( Z )/ 2" (1 - z)* du(z) > 0.
Id

Remark. Hildebrandt and Schoenberg noted in 1933, that this result gives
a constructive proof of the Riesz representation theorem stating that the
dual of C(I%) is the space of Borel measures M (I?).

O

Definition. Let §(z) denote the Dirac point measure located on z € I 4 Tt
satisfies [;q 6(z) dy = .

We extract from the proof of theorem (5.5.2) the construction:

Corollary 5.5.3. An explicit finite constructive approximations of 'a given
measure u on I¢ is given for n € N¢ by the atomic measures

i = 3 (h) @ )

0<k; <nq nd
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Hausdorff established a criterion for absolutely continuity of a measure p
with respect to the Lebesgue measure on [0, 1] [72]. This can be generalized
to find a criterion for comparing two arbitrary measures and works in d
dimensions. o o ' ’

Definition. As usual, we call a measure y on I% uniformly absolutely con-
tinuous with respect to v, if it satisfies:p = f dv with f € L*(I9).

Corollary 5.5.4. A positive probability measure 4 is uniformly absolutely
continuous with respect to a seéond probability measure v if and only if
there exists a constant C such that (A*pu), < C- (A*v), for all k,n € N4,

Proof. If u = fv with f € ‘L°‘f(Id), we get using (5.1)

@ = [ o)k duge)

Id
= / 51 - )k fdu(z)
Id
< Wlleo [ 5" *(1 - 2)* de)
= [flloo(A* V) . v
On the other hand, if (A¥pu), < C(AFv), ‘then Pn = C(Aku)n— (Aku)n
defines by theorem (5.5.2) a positive measure p on I Since p = Cv ~ p,
we have for any Borel set A C I? p(A) > 0. This gives u(4) < Cv(A) and

implies that p is absolutely continuous with respect tov with a function f
satisfying f(z) < C almost everywhere. . - o ‘ O

This leads to a higher dimensional generalization of Hausdorff’s result
which allows to characterize the continuity of a multidimensional random

: ERINTIE

vector from its moments:

P VAR [P S1e
i ISR S S N PRI

Corollary 5.5.5. -A- Borel probability- measure y-on ¢ is uniformly; :abso<
lutely continuous with respect to Lebesgue measure on.J¢. if and only if

|AFp,| < ( Z) ngl(n,- +1) for all k and n,

L

Proof. Use corollary (5.5.4) and ;. 2" dz =[], ( Z: ) [Lni+1). 'O
B LA un - PALO PN AL T U I

There is also a characterizatign of Havisdorff of:L¥ mesfsures on I = [0,1]

for p > 2. This has an obvious generalization to d diinefsions:
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Proposition 5.5. 6. Given a bounded pos1t1ve probability measire ,u €
M(I%) and assume 1 < p < co. Then u € LP(I?) if and ‘only if there
ex1sts a constant C such that for all k n

e @k (1 rso. 6y
k=0 L

Proof. (i) Let u(") be’the measures of corollary (5:.5.3). We’ construct first
from the ‘atomic measures (™ absolutely ‘continuous’ mesisures =
g(")dm on I d glven by a’ functxon g Wthh takes the constant value ’ ‘

(a5l ( ))Pﬂm, F1y

i=1

on a cube of side lengths 1/(n; + 1) centered at the point (n — k)/n € I%.
Because the cube has Lebesgue volume (n+1)~! = Hg___l(n,- +1)71, it has
the same measure with respect to both (™) and g™ dz. We have therefore
also g™dz — p weakly.

(ii) Assume u= fdz with f € LP. Because ¢g™dz <+ fdz in the weak
topology for measures, we have g™ — f weakly in LP. But then, there

exists a constant C such that ||g™||, < C and this is equivalent to (5.3).

(iii) On the other hand, assumption (5.3) means that ||g[|, < C, ‘where

9™ was constructed in (i). Since the unit-ball in the reflexive Banach space
L” (I?) is weakly compact for p € (0,1), a subsequence of g™ converges to
a function g € LP. This implies that a subsequence of g™dx converges as
a measure to gdz which is in L? and which is equal to u by the uniqueness
of the moment problem (Weierstrass).. y .0

5.6 Poisson processes . - - i .o
Definition. A Poisson process (S, P,II, N) over a probability space (2, F, Q)
is given by a complete metric space S, a non-atomic finite Borel measure

P on S and a function w + II(w) C § from 2 to the set of ﬁmte subsets of
S such tha‘t for every measurable set B C S the map

IH( )

is. & P01sson dlstnbuted random varlable w1th parameter P[B] For any.
finite partition {B; }i, of S, the set of random variables { N, } 7%, have o
be independent. The measure P is called the mean measure of the process
‘Here ‘\A[ ‘denotés the cardmahty {pf a ﬁmte set A It 1s understood tha,t
"(@ bﬁweﬁ—{m e :

w— Npw) = [Hn)hm



312 Chapter 5. Selected Topics

Example. We have encou‘tered the one-dimensional Poisson process in
the last chapter as a martingale. We started with IID Poisson distributed
random variables X, which are ”waiting times” and defined Ni(w) =
Z,;“;l Ls, (w)<t- Lets translate this into the current framework. The set S
is [0,] with Lebesgue measure P as mean measure. The set MM(w) is the
discrete point set II{w) = {Sp(w) | n =1,2,3,... }NS. For every Borel set
B in S, we have ) |

Iw)nB

Nol) = n@y

Remark. The Poisson process is an example of a point process, because
we can see it as assigning a random point set II(w) on § which has density
P on S. If S is part of the Euclidean space and the mean measure Pis
continuous P = fdz, then the interpretation is that f(z) is the average
density of points at z.

?

o : Ce
Figure. A Poisson process in R? e -
with mean density : R e
e -._._%,_ o
eV’ PRI CE R
P= dxdy . Lo T Bl
. _“:‘ .. .,.,_"- i,

Theorem 5.6.1 (Existence of Poisson processes). For every non-atomic mea-
sure P on S, there exists a Poisson process.

Proof. Define @ = U, S¢, where §¢ = Sx---x S is the Cartesian product
and S0 = {0}. Let F be the Borel o-algebra on 2. The probability measure
Q restricted to S¢ is the product measure (P xP X - -x P)-Q[Ns = d], where
Q[Ns = d] = Q[S9] = e PI8)(d))~1P[S]*. Define M(w) = {w1,...,wa} if
w € §% and Np as above. One readily checks that (S, P,II, N ) is a Poisson
process on the probability space (€2, F, Q): For any measurable partition
{B;}Lo of S, we have

d! "+ P[B;|%

m
QINp, = di,...,Np, = dm | Ns =do+)_d;j =d] = 7

j=1

o dm! P[S]%
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so that the independence of {Np,}7., follows:

o0
Q|Ns, =d1,...,Ng,, =dm] = Y QINs=d|QINs,

d=di+-+dm

= dl"“,NBm =dm|NS=d]

= e PS4 O

= > I1 PiB;1%
e, A doldm! i

_ [i e—P[BolP[BO]do] ﬁ e~ PIB:l p[B;]%

do! : d;!

do=0 j=1

ﬁ e—P[Bj]p[Bj]dj
ol d;!
m

= HQ[Nsz i) -

This calculation in the case m = 1, leaving away the last step shows that Np
is Poisson distributed with parameter P[B]. The last step in the calculation
is then justified. ]

Remark. The random discrete measure P(w)[B] = Np(w) is a normal-
ized counting measure on S with support on II(w). The expectation of
the random measure P(w) is the measure P on S defined by P[B] =
Jo P(w)[B] dQ(w). But this measure is just P:

Lemma 5.6.2. P = [, P(w) dQ(w) =

Proof. Because the Poisson distributed random variable Np(w) = P(w)[B]
has by assumption the Q-expectation P[B] = ZZ" "ok QN = k| =
fo P(w)[B] dQ(w) one gets P = [, P(w) dQ(w) = O

Remark. The existence of Poisson processes can also be established by
assigning to a basis {e; } of the Hilbert space L2(S,P) some independent
Poisson-distributed random variables Z; = ¢(e;) and define then a map
o(f) = Y, aid(e;) if f = 3;aie;. The image of this map is a Hilbert
space of random variables with dot product Cov[@(f), #(g)] = (f,g). Define
Ng = ¢(1p). These random variables have the correct distribution and are
uncorrelated for disjoint sets B;.

Definition. A point process is a map I a probability space (Q,F, Q) to
the set Gf finite subsets of a probability space (S, B, P) such that Np(w) :=
lw N B) is a random variable for all measurable sets B € B.
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Definition. Assume II is a point process o (S, B,P). For a function f :
S — Rt in L? (S P), define the random vanable

Zf(w) = ) fe

2€ll(w)
Example For a Poisson process a,nd f =1p, one gets ¢(w) = Np(w).

Deﬁmtion The moment generatmg function of I is defined as for any
‘random variable as : S
Mg, ()= E[e™].

It is called the characteristic functional of the point process.

Example. For a Poisson process and f = alp, the moment generating
function of ¥¢(w) = Np(w) is E[e“tNB] = eP1BI(1~¢") We have computed
the moment generating function of a Poisson distributed random variable
in the ﬁrst chapter

1

‘Exampie ‘For a Poisson process a,nd f Z k10518, where Bk are d1s30mt
sets, we have the characteristic functional

H E[ea,tNBJ] _ BZJ’:I P[B,](l e®

=1 .

Example. For a Poisson process,'and f € LY(S,P), the moment generating
function of Xy is

Mz, () = exp(— [ (1 —exp(t/ () APE)- o

This is called Campbell’s theorem. The proof is done by writing f =

f* — f~, where both f+ and f~ are nonnegatlve, then approx1mat1ng
Vboth functions with step functlons fk = EJ E ka a,nd f,c =
20 E g Because for Poxsson process, the random variables £ ft
are mdependent for different 7 -or different sign, the moment generatmg
functlon of Ly is the product of the moment generatlng functlons Z fi =

ANB

Joo

The next ‘theorem of ‘Alfréd Rényi- (1921 1970) gives a handy tool to check
whether a point process, a’ random variable I with values in the set of
ﬁmte subsets of S deﬁnes a Poisson process s

Deﬁmtxon. A k-cube in an open subset S of le is is a set

H[:;' (@, + 1

i=1
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Theorem 5.6.3 (Rényi’s theorem, 1967). Let P be a non-atomic probability
measure on (S, B) and let IT be a point process on (£2, F, Q). Assume for any
finite union of k-cubes B ¢ S, Q[N = 0] = exp(—P|B]). Then (S, P,II, N)
is a Poisson process with mean measure P. :

Proof ( ) Define O(B) ={wen | Np(w) =0} C  for any measurable
set B'in S. By assumptlon Q[O ] =exp(-P[B]).

(ii) For m disjoint k-cubes {Bj}jL,, the sets O(B ) C Q are independent.
Proof '

i

e o) = e, 5, = 0))

j=1
L= CXP( P[U B.’I])

]—

(=P[B;])

Il
=t
%

= II QIO(By)]

j=1

i} (iif) We count the number of pomts in an open open subset U of S using
“cubes B for which w € O(BNU). These random vanable NU(w) converge
to Ny (w) for k — oo, for almost all w.

(iv) For an open set U, the random variable Ny is Poisson distributed
with parameter P[{U]. Proof: we compute its moment generating function.
Because for different k-cubes, the sets O(B;) C O(U) are independent,
the moment ‘generating function of NU =3 1o( B)J) is the product of the
moment generatmg functlons of 1g( B)J)

CEEM) = [ @lo)] + et - QioB))

k—cube B
= ][ (exp(—PIB])+€‘(1 — exp(—P[B]))) .
k—cube B

Each factor of this pr'oduct is positive and the monotone convergence the-
orem shows that the moment generating function of Ny is

Ele™]=lm [ (exp(~P[BI)+e'(1 - exp(~P[B])) .

k—o0

k—cube B
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which converges to exp(P[U](1 — €*)) for kK — oo if the measure P is non-
atomic.

Because the generating function determines the distribution of Ny, this
assures that the random variables Ny are Poisson distributed with param-
eter P[U].

(v) For any disjoint open sets Uy, ..., Un, the random variables { Ny, Jyia
are independent. Proof: the random variables {NU )}je, are mdependent
for large enough k, because no k-cube can be in more than one of the sets
U;, The random variables { N} .)}j=1 are then independent for fixed k. Let-
ting k — oo shows that the variables Ny, are independent.

(vi) To extend (iv) and (v) from open sets to arbitrary Borel sets, one
can use the characterization of a Poisson process by its moment generating
function of f € L'(S,P). If f = Y a;1y, for disjoint open sets U; and
real numbers a;, we have seen that the characteristic functional is the
characteristic functional of a Poisson process. For general f € L(S,P) the
characteristic functional is the one of a Poisson process by approximation
and the Lebesgue dominated convergence theorem. Use f = 15 to verify
that Ng is Poisson distributed and f = Y a;1p; with disjoint Borel sets
Bj to see that {Np,)}7>, are independent. O

5.7 Random maps

Definition. Let (£2, .4, P) be a probability space and M be a manifold with
Borel g-algebra B. A random diffeomorphism on M is a measurable map
from M x Q@ — M so that z — f(z,w) is a diffeomorphism for all w € Q.
Given a P measure preserving transformation T on , it defines a cocycle

8(z,0) = (f(z,0), T(w))
which is a map on M x €.
Example. If M is the circle and f(z,¢) = z + ¢sin(z) is a circle diffeomor-
phism, we can iterate this map and assume, the parameter ¢ is given by
IID random variables which change in each iteration. We can model this

by taking (2, 4,P) = ([0, 1], BN, N) where v is a measure on [0, 1] and
take the shift T'(z,) = zn4+1 and to define

S(z,w) = (f(z,wo), T(w)) .

Iterating this random logistic map is done by taking IID random variables
cn with law v and then iterate

T, T1 = f(%o, o), 22 = f(21,€1) ..
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Example. If (£, 4,P,T) is an ergodic dynamical system, and A : @ —
SL(d,R) is measurable map with values in the special linear group SL(d, R)
of all d x d matrices with determinant 1. With M = R¢, the random
diffeomorphism f(z,v) = A(x)v is called a matrix cocycle. One often uses
the notation

A™Mz) = AT} (2)) - AT 2(x)) -+ A(T'(2)) - Alz)

for the n’th iterate of this random map.

Example. If M is a finite set {1,..,n} and P = P;; is a Markov transition
matrix, a matrix with entries P;; > 0 and for which the sum of the column
elements is 1 in each column. A random map for which f(z;,w) = z; with -
probability P;; is called a finite Markov chain.

Random diffeomorphisms are examples of Markov chains as covered in Sec-
tion (3.14) of the chapter on discrete stochastic processes:

Lemma 5.7.1. a) Any random map defines transition probability functions
P:MxB—[0,1]:

P(z, B) = P[f(z,w) € B] .

b) If A, is a filtration of o-algebras and Xn(w) = T*(w) is An adapted,
then P is a discrete Markov process.

Proof. a) We have to check that for all z, the measure P(z,-) is a prob-
ability measure on M. This is easily be done by checking all the axioms.
We further have to verify that for all B € B, the map ¢ — P(z,B) is
B-measurable. This is the case because f is a diffeomorphism and so con-
tinuous and especially measurable.

b) is the definition of a discrete Markov process. O

Example. If @ = (AN, F¥,1N) and T(z) is the shift, then the random map
defines a discrete Markov process.

Definition. In case, we get IID A-valued random variables Xn, = T" (z)o-
A random map f(x,w) defines so a I1ID diffeomorphism-valued random
variables f1(z)(w) = f(z, X1(w)), f2(z) = f(z, X2(w)). We will call a ran-
dom diffeomorphism in this case an IID random diffeomorphism. If the
transition probability measures are continuous, then the random diffeomor-
phism is called a continuous IID random diffeomorphism. If f(z,w) depends
smoothly on w and the transition probability measures are smooth, then
the random diffeomorphism is called a smooth IID random diffeomorphism.
It is important to note that ”continuous” and ” smooth” in this definition is
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only with respect to the transition probabilities that A must have at least
dimension d > 1. With respect to M, we have already assumed smoothness
from the beginning.

Definition. A measure ;zon M is called a stationary measure for the random
diffeomorphism if the measure x x P is invariant under the map S.

Remark. If the random diffeomorphism defines a Markov process, the sta-
tionary measure y is a stationary measure of the Markov process.

Example. If every diffeomorphism z — f (z,w) from w € Q preserves a
measure u, then u is a automatically a stationary measure.

Example. Let M = T? = R2/Z? denote the two-dimensional torus. It is a
group with addition modulo 1 in each coordinate. Given an IID random
map:

ful) = { z+a with probability 1/2
"7 z+ B with probability 1 /2

Each map either rotates the point by the vector o = (01,a2) or by the
vector § = (B1, ). The Lebesgue measure on T? is invariant because
it is invariant for each of the two transformations. If o and B are both
rational vectors, then there are infinitely many ergodic invariant measures.
For example, if a = (3/7,2/7),8 = (1/11,5/11) then the 77 rectangles
[6/7,(+1)/7] x [j/11, (5 + 1)/ 11] are permuted by both transformations.

Definition. A stationary measure x of a random diffeomorphism is called
ergodic, if 4 x P is an ergodic invariant measure for the map S on (M x
Q,uxP).

Remark. If 4 is a stationary invariant measure, one has
u) = [ (o 4) du

for every Borel set A € A. We have earlier written this as a fixed point
equation for the Markov operator P acting on measures: Py = p. In the
context of random maps, the Markov operator is also called a transfer
operator.

Remark. Ergodicity especially means that the transformation T on the
"base probability space” (2,4, P) is ergodic.

Definition. The support of a measure 4 is the complement of the open set
of points z for which there is a neighborhood U with w(U) = 0. It is by
definition a closed set.

The previous example 2) shows that there can be infinitely many ergodic in-
variant measures of a random diffeomorphism. But for smooth IID random
diffeomorphisms, one has only finitely many, if the manifold is compact:
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Theorem 5.7.2 (Finitely many ergodic stationary measures (Doob)). If M
is compact, a smooth IID random diffeomorphism has finitely many ergodic
stationary measures y;. Their supports are mutually disjoint and separated
by open sets.

Proof. (i) Let p1 and p2 be two ergodic invariant measures. Denote by ¥
and ¥, their support. Assume ¥, and X3 are not disjoint. Then there ex-
ist points z; € ¥; and open sets U; of z; so that the transition probability
P(z1,U,) is positive. This uses the assumption that the transition probabil-
ities have smooth densities. But then up(U x Q) = 0 and p(S(U xQ)) > 0
violating the measure preserving property of S.

(i) Assume there are infinitely many ergodic invariant measures, there
exist at least countably many. We can enumerate them as p;, 42, ... Denote
by ¥; their supports. Choose a point y; in ¥;. The sequence of points
has an accumulation point y € M by compactness of M. This implies
that an arbitrary e-neighborhood U of y intersects with infinitely many ;.
Again, the smoothness assumption of the transition probabilities P(y, )
contradicts with the S invariance of the measures y; having supports ¥;.

Remark. If y;, y, are stationary probability measures, then App +(1—A)p2
is an other stationary probability measure. This theorem implies that the
set of stationary probability measures forms a closed convex simplex with
finitely many corners. It is an example of a Choquet simplex.

5.8 Circular random variables

Definition. A measurable function from a probability space (©2,A,P) to
the circle (T, B) with Borel o-algebra B is is called a circle-valued random
variable. It is an example of a directional random variable. We can realize
the circle as T = [—m,7) or T = [0, 27) = R/(27Z).

Example. If (0, A,P) = (R, A, /2/\/2ndz, then X (z) = z mod 27 is a
circle-valued random variable. In general, for any real-valued random vari-
able Y, the random variable X(z) = X mod 27 is a circle-valued random
variable.

Example. For a positive integer k, the first significant digit is X (k) =
2mlog,o(k) mod 1. It is a circle-valued random variable on every finite
probability space (2 = {1,...,n }, A, P{k}] = 1/n).
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Example. A dice takes values in 0,1,2,3,4,5 (count 6 = 0). We roll it two
times, but instead of adding up the results X and Y, we add them up
modulo 6. For example, if X = 4 and Y = 3, then X +Y = 1. Note that
E[X + Y] = E[X] # E[X] + E[Y]. Even if X is an unfair dice and if Y is
fair, then X + Y is a fair dice.

Definition. The law of a circular random variable X is the push-forward
measure i = X*P on the circle T. If the law is absolutely continuous, it
has a probability density function fx on the circle and pu = fx(z)dz. As
on the real line the Lebesgue decomposition theorem (2.12.2) assures that
every measure on the circle can be decomposed p = figp + fac + Hsc, Where

fipp 18 (DP), fsc is (5¢) and pac is (ac).

Example. The law of the wrapped normal distribution in the first example
is a measure on the circle with a smooth density

fx@) = S e o

k=—00

It is an example of a wrapped normal distribution.

Example. The law of the first significant digit random variable X, (k) =
27 log;o(k) mod 1 defined on {1,...,n } is a discrete measure, supported
on {k27/10]0 < k < 10 }. It is an example of a lattice distribution.

Definition. The entropy of a circle-valued random variable X with prob-
ability density function fx is defined as H(f) = — 02" f(x)log(f(x)) dzx.
The relative entropy for two densities is defined as

2n
H(flg) = A f(z)log(f(x)/g(x)) dz .

The Gibbs inequality lemma (2.15.1) assures that H(f|g) > 0 and that
H(flg) =0, if f = g almost everywhere.

Definition. The mean direction m and resultant length p of a circular
random variable taking values in {|z| = 1} C C are defined as

peim — E[eiX] .

One can write p = E[cos(X — m)]. The circular variance is defined as
V =1-p = E[l —cos(X - m)] = E[(X -m)?/2 - (X - m)4/4!...].
The later expansion shows the relation with the variance in the case of
real-valued random variables. The circular variance is a number in [0, 1]. If
p = 0, there is no distinguished mean direction. We define m = 0 just to
have one in that case. '
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Example. If the distribution of X is located a single point zo, then p =
1,m = zo and V = 0. If the distribution of X is the uniform distribution
on the circle, then p = 0,V = 1. There is no particular mean direction in

this case. For the wrapped normal distribution m = 0,p = e’/ 2V =
1—e 7 /2 ’

The following lemma is analogous to theorem (2.5.5):

Theorem 5.8.1 (Chebychev inequality on the circle). If X is a circular
random variable with circular mean m and variance V, then

Pllsin((X —m)/2)| 2 d < 55 -

Proof. We can assume without loss of generality that m = 0, otherwise
replace X with X — m which does not change the variance. We take T =
[—m, 7). We use the trigonometric identity 1 — cos(z) = 2 sin?(z/2), to get

V = E[l-cos(X)]= 2E[sin2(§)]

v

. X
2E[1| sin(£)|>e Sln(?)]

I\

2e2p[|sin(3,§-)| >e].
a

Example. Let X be the random variable which has a discrete distribution
with a law supported on the two points ¢ = zp = 0 and £ = T+ =
+2 arcsin(e) and P[X = zo] = 1 — V/(2€?) and P[X = z4] = V/(4¢€?). This
distribution has the circular mean m and the variance V. The equality

P|| sin(X/2)| > €] = 2V/(4€%) = V/(2€%) .

shows that the Chebychev inequality on the circle is ”sharp”: one can not ,
improve it without further assumptions on the distribution.

Definition. A sequence of circle-valued random variables X, converges
weakly to a circle-valued random variable X if the law of X, converges
weakly to the law of X. As with real valued random variables weak con-
vergence is also called convergence by law.

Example. The sequence X, of significant digit random variables X, con-
verges weakly to a random variable with lattice distribution P[X = k] =
log;o(k + 1) — log;o(k) supported on {k27/10| 0 < k < 10 }. It is called
the distribution of the first significant digit. The interpretation is that if
you take a large random number, then the probability that the first digit
is 1 is log(2), the probability that the first digit is 6 is log(7/6). The law is
also called Benford’s law.
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Definition. The characteristic function of a circle-valued random variable
X is the Fourier transform ¢x = & of the law of X. It is a sequence (that
is a function on Z) given by

¢x(n) = E[e"X] = /Te'””c dvx(z) .

Definition. More generally, the characteristic function of a T9-valued ran-
dom variable (circle-valued random vector) is the Fourier transform of the
law of X. It is a function on Z¢ given by

¢x(n) = E[e™X] =/ €™ dux(z) .

T

The following lemma is analog to corollary (2.17).

Lemma 5.8.2. A sequence X,, of circle-valued random variables converges
in law to a circle-valued random variable X if and only if for every integer
k, one has ¢x, (k) — ¢x (k) for n — oo.

Example. A circle valued random variable with probability density function
f(z) = Cere=(==2) i5 called the Mises distribution. It is also called the
circular normal distribution. The constant C is 1/(21I(x)), where Io(x) =
> m=0(k/2)?*/(n!2) a modified Bessel function. The parameter x is called
the concentration parameter, the parameter q is called the mean direction.
For k — 0, the Mises distribution approaches the uniform distribution on
the circle.

4 S 6

ow

Figure. The density function of
the Mises distribution plotted as a
polar graph.

Figure. The density function of
the Mises distribution on [—m, ).
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Proposition 5.8.3. The Mises distribution maximizes the entropy among all
circular distributions with fixed mean o and circular variance V.

Proof. If g is the density of the Mises distribution, then log(g) = & cos(z —
a) + log(C) and H(g) = kp + 27 log(C).
Now compute the relative entropy

0> H(flg) = [ f(a) og(f@)dz - [ 1(a)loglo(e)dz
This means with the resultant length p of f and g:
H(f) > —E[kcos(z — a) + log(C)] = —kp + 2mlog(C* -= H(g) .
a

Definition. A circle-valued random variable with probability density func-
tion

1 2
—(z—a—2kr) 2
flz) = s E e 20

k=—o00

is the wrapped normal distribution. It is obtained by taking the normal
distribution and wrapping it around the circle: if X is a normal distribu-
tion with mean a and variance o2, then X mod 1 is the wrapped normal
distribution with those parameters.

Example. A circle-valued random variable with constant density is called
a random variable with the uniform distribution.

Example. A circle-valued random variable with values in a closed finite
subgroup H of the circle is called a lattice distribution. For example, the
random variable which takes the value 0 with probability 1/2, the value
2m/3 with probability 1/4 and the value 47 /3 with probability 1/4 is an
example of a lattice distribution. The group H is the finite cyclic group Z3.

Remark. Why do we bother with new terminology and not just look at real-
valued random variables taking values in [0, 27)? The reason to change the
language is that there is a natural addition of angles given by rotations.
Also, any modeling by vector-valued random variables is kind of arbitrary.
An advantage is also that the characteristic function is now a sequence and
no more a function.

Distribution Parameter | characteristic function

point To ox (k) = k2o

uniform dx(k)=0for k#0and ¢x(0) =1
Mises K,a=0 I () /In(x)

wrapped normal | o,a =0 eFo/2 = pk°
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The functions Ix () are modified Bessel functions of the first kind of k’th
order.

Definition. If X, X,,... is a sequence of circle-valued random variables,
define S, = X1 +--- + X,,.

Theorem 5.8.4 (Central limit theorem for circle-valued random variable).
The sum S, of IID-valued circle-valued random variables X; which do
not have a lattice distribution converges in distribution to the uniform
distribution.

Proof. We have |¢x (k)| < 1 for all k # 0 because if ¢x (k) = 1 for some
k # 0, then X has a lattice distribution. Because ¢g, (k) = [Tee: 6. (k),
all Fourier coefficients ¢, (k) converge to 0 for n — oo for k # 0. O

Remark. The IID property can be weakened. The Fourier coefficients
éx,(k) =1—ank

should have the property that > o> | anr diverges, for all k, because then,
[Toz1(1 = ank) — 0. If X; converges in law to a lattice distribution, then
there is a subsequence, for which the central limit theorem does not hold.

Remark. Every Fourier mode goes to zero exponentially. If ¢x (k) <1—4
for § > 0 and all k # 0, then the convergence in the central limit theorem
is exponentially fast.

Remark. Naturally, the usual central limit theorem still applies if one con-
siders a circle-valued random variable as a random variable taking values in
[—m, w] Because the classical central limit theorem shows that S Xn/Vn
converges weakly to a normal distribution, Y} ; X,/v/n mod 1 converges
to the wrapped normal distribution. Note that such a restatement of the
central limit theorem is not natural in the context of circular random vari-
ables because it assumes the circle to be embedded in a particular way in
the real line and also because the operation of dividing by n is not natural
on the circle. It uses the field structure of the cover R.

Example. Circle-valued random variables appear as magnetic fields in math-
ematical physics. Assume the plane is partitioned into squares 75,7 +1) x
[k, k+1) called plaquettes. We can attach IID random variables B;, = eiXs*
on each plaquette. The total magnetic field in a region G is the product of
all the magnetic fields Bjj in the region:

H Bjj = eXanec Kok
(4,k)eCG

The central limit theorem assures that the total magnetic field distribution
in a large region is close to a uniform distribution.
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Example. Consider standard Brownian motion B; on the real line and its
graph of {(t, B;) | t € R } in the plane. The circle-valued random variables
X, = B, mod 1 gives the distance of the graph at time ¢t = n to the
next lattice point below the graph. The distribution of X, is the wrapped
normal distribution with parameter m = 0 and 0 = n.

Figure. The graph of one- m \
" dimensional Brownian motion W M

with a grid. The stochastic pro- p\' ¥ ¥

cess produces a circle-valued ran- y 'Vj

dom variable X,, = B, mod 1. ; \

of X. Indeed X +Y and Y are positively correlated because
Cov[X +Y,Y] = Cov[X,Y] + Cov[Y,Y] = Cov[Y,Y] = Var[Y] > 0.

The situation changes for circle-valued random variables. The sum of two
independent random variables can be independent to the first random vari-
able. Adding a random variable with uniform distribution immediately ren-
ders the sum uniform:

Theorem 5.8.5 (Stability of the uniform distribution). If X,Y are circle-
valued random variables. Assume that Y has the uniform distribution and
that X,Y are independent, then X + Y is independent of X and has the
uniform distribution.

Proof. We have to show that the event A = {X +Y € [c,d] } is indepen-
dent of the event B = {X € [a,b] }. To do so we calculate P[AN B] =

f: fcd__; fx(z)fy (y) dydz. Because Y has the uniform distribution, we get
after a substitution u =y —z,

b pd—z b pd
[ [ i@t dute = [ [ 5@ ) dude = PlAREB).

By looking at the characteristic function ¢x+y = ¢x ¢y = ox, we see that
X + Y has the uniform distribution. a
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The interpretation of this lemma is that adding a uniform random noise to
a given uniform distribution makes it uniform.

On the n-dimensional torus T¢, the uniform distribution plays the role of
the normal distribution as the following central limit theorem shows:

Theorem 5.8.6 (Central limit theorem for circular random vectors). The
sum S, of IID-valued circle-valued random vectors X converges in distri-
bution to the uniform distribution on a closed subgroup H of G.

Proof. Again [¢x (k)| < 1. Let A denote the set of k such that ox (k) =1.

(i) A is a lattice. If fe*X(® dz = 1 then X (z)k = 1 for all z. If A, Az are
in A, then \; + X\ € A.

(i) The random variable takes values in a group H which is the dual group
of Z¢/H.

(iii) Because s, (k) = [T5_, #x, (k), all Fourier coefficients ¢s,. (k) which
are not 1 converge to 0.

(iv) ¢s.(k) — 14, which is the characteristic function of the uniform dis-
tribution on H. O

Example. If G = T? and A = {...,(~1,0),(1,0),(2,0),... }, then the ran-
dom variable X takes values in H = {(0,y) | y € T! }, a one dimensional
circle and there is no smaller subgroup. The limiting distribution is the
uniform distribution on that circle.

Remark. If X is a random variable with an absolutely continuous distribu-
tion on T¢, then the distribution of S, converges to the uniform distribution
on T4,

Exercice. Let Y be a real-valued random variable which has standard
normal distribution. Then X(z) = Y(z) mod 1 is a circle-valued ran-
dom variable. If ¥; are IID normal distributed random variables, then
Sp =Y1+---+Y, mod 1 are circle-valued random variable. What is
Cov(Sn, Sm]?

The central limit theorem applies to all compact Abelian groups. Here is
the setup:



5.9. Lattice points near Brownian paths 327

Definition. A topological group G is a group with a topology so that addi-
tion on this group is a continuous map from G x G — G and such that the
inverse ¢ — z~! from G to G is continuous. If the group acts transitively
as transformations on a space H, the space H is called a homogeneous
space. In this case, H can be identified with G/G, where G is the isotopy
subgroup of G consisting of all elements which fix a point z.

Example. Any finite group G with the discrete topology d(z,y) = 1ifz # y
and d(z,y) = 0 if £ = y is a topological group.

Example. The real line R with addition or more generally, the Euclidean
space R% with addition are topological groups when the usual Euclidean
distance is the topology.

Example. The circle T with addition or more generally, the torus T¢ with
addition is a topological group with addition. It is an example of a compact
Abelian topological group.

Example. The general linear group G = Gl(n,R) with matrix multiplica-
tion is a topological group if the topology is the topology inherited as a sub-
set of the Euclidean space R™ of n x n matrices. Also subgroup of Gl(n,R),

like the special linear group SL(n,R) of matrices with determinant 1 or
the rotation group SO(n, R) of orthogonal matrices are topological groups.
The rotation group has the sphere S™ as a homogeneous space.

Definition. A measurable function from a probability space (£2,A,P) to
a. topological group (G, B) with Borel o-algebra B is is called a G-valued
random variable.

Definition. The law of a spherical random variable X is the push-forward
measure u = X*P on G.

Example. If (G, A, P) is a the probability space by taking a compact topo-
logical group G with a group invariant distance d, a Borel o-algebra A and
the Haar measure P, then X (z) = z is a group valued random variable.
The law of X is called the uniform distribution on G.

Definition. A measurable function from a probability space (£2, A, P) to the
group (G, B) is called a G-valued random variable. A measurable function
to a homogeneous space is called H-valued random variable. Especially,
if H is the d-dimensional sphere (S¢, B) with Borel probability measure,
then X is called a spherical random variable. It is used to describe spherical
data.

5.9 Lattice points near Brownian paths

The following law of large numbers deals with sums S,, of n random vari-
ables, where the law of random variables depends on n.
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Theorem 5.9.1 (Law of large numbers for random variables with shrinking
support). If X; are IID random variables with uniform distribution on [0,1].
Then for any 0 < é < 1, and A, = [0,1/n?], we have

) 1 <
e DNCARE

in probability. For § < 1/2, we have almost everywhere convergence.

Proof. For fixed n, the random variables Zy(z) = 1(0,1/n%)(Xk) are indepen-
dent, identically distributed random variables with mean E[Z)] = p = 1/n®
and variance p(1 - p). The sum S, = 3 ;_; Xx has a binomial distribution
with mean np = n'~% and variance Var[S,] = np(1 — p) = nl=%(1 - p).
Note that if n changes, then the random variables in the sum S, change
too, so that we can not invoke the law of large numbers directly. But the
tools for the proof of the law of large numbers still work.

For fixed € > 0 and n, the set

Sn(z
Ba=foen 1128 15 )
has by the Chebychev inequality (2.5.5), the measure

Var[S,] 1-p <1
n2~20e2 T 2p1-6 = 2,16 °

P[B,) < Var[zl—sfi]/ez =

This proves convergence in probability and the weak law version for all
é < 1 follows.

In order to apply the Borel-Cantelli lemma (2.2.2), we need to take a sub-
sequence so that 37>, P[B,,] converges. Like this, we establish complete
convergence which implies almost everywhere convergence.

Take k = 2 with x(1 — ) > 1 and define ny = k* = k2. The event B =
lim supy, By, has measure zero. This is the event that we are in infinitely
many of the sets B, . Consequently, for large enough k, we are in none of
the sets By, : if z € B, then

2l <
g
for large enough k. Therefore,
Snp+i(z Sn, (z S| (T (x))
Pt < 2l ST,

Ny ny Ny,
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Because for ni = k* we have ngy1 —nx =2k + 1 and

Si(Tp(z)) _ 2k+1

e E2(1-0)

For § < 1/2, this goes to zero assuring that we have not only convergence
of the sum along a subsequence S,, but for S, (compare lemma (2.11.2)).

We know now |iA1_%)- — 1| — 0 almost everywhere for n — oo. d

Remark. If we sum up independent random variables Zx = n‘sl[o,l /8] (Xk)
where X are IID random variables, the moments E[Z}"] = n{m~1)? be-
come infinite for m > 2. The laws of large numbers do not apply be-
cause E[Z?] depends on n and diverges for n — oco. We also change the
random variables, when taking larger sums. For example, the assumption
sup,, 2 >~ | Var[X;] < oo does not apply.

Remark. We could not conclude the proof in the same way as in theo-
rem (2.9.3) because U, = Y ,_; Zx is not monotonically increasing. For
8 € [1/2,1) we have only proven a weak law of large numbers. It seems
however that a strong law should work for all § < 1.

Here is an application of this theorem in random geometry.

Corollary 5.9.2. Assume we place randomly n discs of radius r = 1/n1/2-%/2

onto the plane. Their total area without overlap is mnr? = nd. If S, is the
number of lattice points hit by the discs, then for § < 1/2
Sn

-— 7.
nd

almost surely.

Figure. Throwing randomly :
discs onto the plane and count-
ing the number of lattice points

1
which are hit. The size of the ﬁ D
%i’

discs depends on the number of
discs on the plane. If § = 1/3
and if n = 1’000°000, then we 18 ®
have discs of radius 1/10000 i 8-~
and we expect Sy, the number of o
lattice point hits, to be 1007. 9

‘_ﬁ__k‘
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Remark. Similarly as with the Buffon needle problem mentioned in the in-
troduction, we can get a limit. But unlike the Buffon needle problem, where
we keep the setup the same, independent of the number of experiments. We
adapt the experiment depending on the number of tries. If we make a large
number of experiments, we take a small radius of the disk. The case § = 0
is the trivial case, where the radius of the disc stays the same.

The proof of theorem (5.9.1) shows that the assumption of independence
can be weakened. It is enough to have asymptotically exponentially decor-
related random variables.

Definition. A measure preserving transformation T of [0,1] has decay of
correlations for a random variable X satisfying E[X] = 0, if

Cov[X,X(T™")] =0

for n — oo. If
Cov[X, X(T™)] < e "

for some constant C > 0, then X has exponential decay of correlations.

Lemma 5.9.3. If B, is standard Brownian motion. Then the random vari-
ables X, = B, mod 1 have exponential decay of correlations.

Proof. B, has the standard normal distribution with mean 0 and standard
deviation ¢ = n. The random variable X, is a circle-valued random variable
with wrapped normal dlstrlbutlon with parameter ¢ = n. Its characteris-
tic function is ¢x(k) = e~**7*/2_ We have Xn+m = Xn + Yy mod 1,

where X,, and Y, are independent circle-valued random variables. Let
gn = e ¥ 2 cos(kz) = 1 — e(z) > 1 — e~ be the density of X,

which is also the density of Y;,. We want to know the correlation between
Xnt+m and X,

1 p1
/0 /o f(@)f(z +y)g(x)g(y) dy dz .

With u = z + y, this is equal to

1 pl
/0 /0 f(@)f(w)g(2)g(u — z) dudz

1 1
/0 /0 (@) )1 - e@))(1 - e(u ~ z)) dudz
C1|f[2e~C"

IA
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Proposition 5.9.4. If T : [0,1] — [0,1] is a measure-preserving transfor-
mation which has exponential decay of correlations for X;. Then for any
6 €[0,1/2), and A, = [0,1/n®], we have

L1
g, o 3 ) 1.
=1

Tn—+00

Proof. The same proof works. The decorrelation assumption implies that
there exists a constant C' such that

Y CovlX;, X;]<C.

1#Fj<n
Therefore,

Var(S,] = nVar[X,] + Z Cov|Xi, X;] < Cilfl3% E e—Cli=i)*

i#ji<n i,j<n

The sum converges and so Var[S,] = nVar[X;] + C. O

Remark. The assumption that the probability space § is the interval [0, 1] is
not crucial. Many probability spaces (€2, .4, P) where (2 is a compact metric
space with Borel g-algebra A and P[{z}] = 0 for all z € Q is measure
theoretically isomorphic to ([0,1], B,dz), where B is the Borel o-algebra
on [0,1] (see [13] proposition (2.17). The same remark also shows that
the assumption A, = [0,1/n%] is not essential. One can take any nested
sequence of sets A, € A with P[4,] = 1/n®, and A,4; C A,.

Figure. We can apply this propo-
sitton to a lattice point prob-
lem mnear the graphs of one-
dimensional Brownian motion,
where we have a probability space
of paths and where we can make
a statement about almost every
path in that space. This is a re-
sult in the geometry of numbers
for connected sets with fractal
boundary.
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Corollary 5.9.5. Assume B; is standard Brownian motion. For any 0 < § <
1/2, there exists a constant C, such that any 1/n'*% neighborhood of the
graph of B over [0, 1] contains at least C/n'~ lattice points, if the lattice
has a minimal spacing distance of 1/n.

Proof. Byy1/n, mod 1/n is not independent of B; but the Poincaré return
map T from time t = k/n to time (k + 1)/n is a Markov process from.
[0,1/7n] to [0,1/n] with transition probabilities. The random variables X;
have exponential decay of correlations as we have seen in lemma (5.9.3). O

Remark. A similar result can be shown for other dynamical systems with
strong recurrence properties. It holds for example for irrational rotations
with T'(z) = 4+ o mod 1 with Diophantine «, while it does not hold for
Liouville a. For any irrational a, we have f, = =5 Y r_; 14, (T*(z)) near
1 for arbitrary large n = g, where p;/q; is the periodic approximation of
4. However, if the q; are sufficiently far apart, there are arbitrary large n,
where f, is bounded away from 1 and where f,, do not converge to 1.

The theorem we have proved above belongs to the research area of geome-
try of numbers. Mixed with probability theory it is a result in the random
geometry of numbers.

A prototype of many results in the geometry of numbers is Minkowski’s
theorem:

Theorem 5.9.6 (Minkowski theorem). A convex set M which is invariant
under the map T(z) = —z and with area > 4 contains a lattice point
different from the origin.

Proof. One can translate all points of the set M back to the square 2 =
[-1,1] x [-1,1]. Because the area is > 4, there are two different points
(z,y), (a,b) which have the same identification in the square 2. But if
(z,y) = (u+2k,v+2l) then (z—u,y—v) = (2k, 21). By point symmetry also
(a,b) = (—u, —v) is in the set M. By convexity ((x+a)/2, (y+b)/2) = (k, 1)
is in M. This is the lattice point we were looking for. O
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Figure. A convex, symmetric set
M. For illustration purposes, the
area has been chosen smaller
than 4 in this picture. The theo-
rem of Minkowski assumes, it is
larger than 4.

Figure. Translate all points back
to the square [—1,1] x [—1,1] of
area 4. One obtains overlapping
points. The symmetry and con-
vexity allows to conclude the ex-
istence of a lattice point in M.

There are also open questions:

e The Gauss circle problem asks to estimate the number of 1/n-lattice
points g(n) = 7n®+ E(n) enclosed in the unit disk. One believes that
an estimate E(n) < Cn? holds for every 8 > 1/2. The smallest @ for
which one knows the is # = 46/73.

e For a smooth curve of length 1 which is not a line, we have a similar
result as for the random walk but we need 4 < 1/3. Is there a result
for 6 < 17

e If we look at Brownian motion in R?. How many 1/n lattice points
are there in a Wiener sausage, in a 1/n'*® neighborhood of thé path?

5.10 Arithmetic random variables

Because large numbers are virtually infinite - we have no possibility to in-
spect all of of the numbers from 2, = {1,...n = 10'Y} for example -
functions like X,, = k% +5 mod n are accessible on a small subset only. The
function X,, behaves as random variable on an infinite probability space. If



334 Chapter 5. Selected Topics

we could find the events U, = {X,, = 0 } easily, then factorization would
be easy as its factors can be determined from in U,. A finite but large
probability space 2, can be explored statistically and the question is how
much information we can draw from a small number of data. It is unknown
how much information can we get from a large integer n with finitely many
computations. Can, we statistically recover the factors of n from O(log(n))
data points (k;,z;), where z; = n mod k; for example?

As an illustration of how arithmetic complexity meets randomness, we con-
sider in this section examples of number theoretical random variables, which
can be computed with a fixed number of arithmetic operations. Both have
the property that they appear to be "random” for large n. These functions
belong to a class of random variables

X (k) = p(k,n) mod q(k,n) ,

where p and ¢ are polynomials in two variables. For these functions, the
sets X~1(a) = {X(k) = a } are in general difficult to compute and
Yo(k) = X(k),Y1(k) = X(k+1),...,Yi(k) = X(k + ) behave very much
as independent random variables.

To deal with "number theoretical randomness”, we use the notion of asymp-
totically independence. Asymptotically independent random variables ap-
proximate independent random variables in the limit n — oo. With this
notion, we can study fixed sequences or deterministic arithmetic functions
on finite probability spaces with the language of probability, even so there is
no fixed probability space on which the sequences form a stochastic process.

Definition. A sequence of number theoretical random variables is a col-
lection of integer valued random variables X,, defined on finite probability
spaces (2, An, Py,) for which 2, C Q,,1 and A, is the set of all subsets
of Q. An example is a sequence X, of integer valued functions defined
.on , = {0,...,n'— 1 }. If there exists a constant C such that X, on
{0,...,n } is computable with a total of less than C additions, multiplica-
tions, comparisons, greatest common divisor and modular operations, we
call X a sequence of arithmetic random variables.

Example. For example
Xn(z) = (((° = 7) mod 9)3z ~ 2*) mod n
defines a sequence of arithmetic random variables on ,, = {0,...,n—1}.

Example. If z, is a fixed integer sequence, then X,(k) = zx on Q, =
{0,...,n — 1} is a sequence of number theoretical random variables. For
example, the digits x, of the decimal sequence of 7 defines a sequence
of number theoretical random variables X,,(k) = z, for kK < n. However,
in the case of =, it is not known, whether this sequence is an arithmetic
sequence. It would be a surprise, if one could compute z,, with a finite n-
independent number of basic operations. Also other deterministic sequences
like the decimal expansions of 7, /2 or the Mébius function u(n) appear
"random”. '
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Remark. Unlike for discrete time stochastic processes Xn, where all ran-
dom variables X,, are defined on a fixed probability space (Q,A,P), an
arithmetic sequence of random variables X, uses different finite probabil-
ity spaces ({ln, An, Pn).

Remark. Arithmetic functions are a subset of the complexity class P of
functions computable in polynomial time. The class of arithmetic sequences
of random variables is expected to be much smaller than the class of se-
quences of all number theoretical random variables. Because computing
ged(z,y) needs less than C(z +y) basic operations, we have included it
too in the definition of arithmetic random variable.

Definition. If lim, . E[X,] exists, then it is called the asymptotic expec-
tation of a sequence of arithmetic random variables. If lim,_ o Var[Xpn]
exists, it is called the asymptotic variance. If the law of X,, converges, the
limiting law is called the asymptotic law.

Example. On the probability space 0, = [1,... ,n]x[L,...,n], consider the
arithmetic random variables Xq = 1g,, where Sq = {(n,m), ged(n, m) =
d}.

Proposition 5.10.1. The asymptotic expectation P,[S1] = Ea[X1] is 6/
In other words, the probability that two random integers are relatively
prime is 6/72.

Proof. Because there is a bijection ¢ between S1 on [1,..., n)? and Sq on
[1,...,dn)? realized by ¢(j, k) — (dj, dk), we have |S1|/n? = |Sal/(d?*n?).
This shows that En[X1]/En[Xa) — d? has a limit 1/d? for n — oo. To
know P[S;], we note that the sets S4 form a partition of N? and also when
restricted to Q. Because P[S4] = P[S1]/d?, one has

1 1 1 w2
P[S1]'(T§+§+§+...)=P[Sl]—6—=l,

so that P[S;] = 6/n2. m]
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Figure. The probability that two

random integers are relatively o"n & u"s 270 Suna
prime s 6/72. A cell (j,k)

in the finite probability space e ————

1,...,n] x [1,...,n] is painted L ERETE

'
E RS RN SRR B AR
] [ ] [

black if ged(j, k) = 1. The proba-
bility that ged(j, k) = 1 is 6/7% =
0.607927 ... in the limit n — oo.
So, if you pick two large num-
bers (j, k) at random, the change
to have no common divisor is e = mleon
slightly larger than to have a o O e e
common divisor.

Exercice. Show that the asymptotic expectation of the arithmetic random
variable X, (z,y) = ged(z,y) on [1,...,n]? is infinite.

Example. A large class of arithmetic random variables is defined by
Xn(k) - p(n7 k) mod q(n, k)

on 2, = {0,...,n =1 } where p and ¢ are not simultaneously linear poly-
nomials. We will look more closely at the following two examples:

1) Xn(k) =n%+cmod k
2) X,(k) = k% +cmod n

Definition. Two sequences Xy, Y, of arithmetic random variables, (where
X, Y, are defined on the same probability spaces §2,), are called uncor-
related if Cov[X,,Y,] = 0. The are called asymptotically uncorrelated, if
their asymptotic correlation is zero:

CovX,,Ys] — 0
for n — cc.

Definition. Two sequences X,Y of arithmetic random variables are called
independent if for every n, the random variables X,,Y, are independent.
Two sequences X,Y of arithmetic random variables with values in [0, n]
are called asymptotically independent, if for all 7, J, we have

X’n. Yn Xn Yn
P[— €I, —e€J|-P[—€IlP[—€J]|—0
n n n n

for n — .



5.10. Arithmetic random variables 337

Remark. If there exist two uncorrelated sequences of arithmetic random
variables U, V such that ||U, — Xn||12(,) — 0 and ||V, ~ Ya|lL2,) — 0,
then X,Y are asymptotically uncorrelated. If the same is true for indepen-
dent sequences U, V of arithmetic random variables, then X,Y are asymp-
totically independent.

Remark. If two random variables are asymptotically independent, they are
asymptotically uncorrelated.

Example. Two arithmetic random variables X, (k) = k mod n and Y, (k) =
ak +b mod n are not asymptotic independent. Lets look at the distribution
of the random vector (X,,Y,) in an example:

Figure. The figure  shows
the points (Xn(k),Yn(k)) for
Xn(k) = k,Yo(k) = 5k + 3
modulo n in the case n = 2000. H ] ;
There is a clear correlation be- H H i ;
tween the two random variables. i

Exercice. Find the correlation of X, (k) = k mod n and Y,(k) = 5k +
3 mod n.

Having asymptotic correlations between sequences of arithmetic random
variables is rather exceptional. Most of the time, we observe asymptotic
independence. Here are some examples:

Example. Consider the two arithmetic variables X, (k) = k and
Y, (k) = ck™! mod p(n) ,

where c is a constant and p(n) is the n’th prime number. The random
variables X,, and Y,, are asymptotically independent. Proof: by a lemma of
Merel [67, 23], the number of solutions of (z,y) € I x J of xy = c mod p is

LIV 4 01721082 (p)) -
P

This means that the probability that X, /n € I,,Y,/n € Jn is |In| - |Jn|.
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Figure. Illustration of the lemma
of Merel. The picture shows the
points {(k,1/k) mod p }, where
p is the 200°th prime number
p(200) = 1223.

Nonlinear polynomial arithmetic random variables lead in general to asymp-
totic independence. Lets start with an experiment:

Figure. We see the points
(Xn(k),Yn(k)) for Xn(k) =
k,Yo(k) = k% + 3 in the case
n = 2001. Even so there are
narrow regions in which some
correlations are wvisible, these
regions become smaller and
smaller for n — oo. Indeed, we
will show that X,,,Y, are asymp-
totically independent random
variables.

i

The random variable X, (k) = (n? + ¢) mod k on {1,...,n} is equivalent
to X, (k) =nmod k on {0,...,[v/n — c] }, where [z] is the integer part of
x. After the rescaling the sequence of random variables is easier to analyze.

To study the distribution of the arithmetic random variable X,,, we can
also rescale the image, so that the range in the interval [0, 1]. The random
variable Y;, = X,,(z-|Q,|) can be extended from the discrete set {k/|Qy|)}
to the interval [0, 1]. Therefore, instead of n? + ¢ mod k, we look at

nmodk n n
Xn(k) = —— =1~ [{]

on Q) = {1,...,m(n) }, where m(n) = v/n —c.

Elements in the set X ~1(0) are the integer factors of n. Because factoring
is a well studied NP problem, the multi-valued function X! is probably
hard to compute in general because if we could compute it fast, we could
factor integers fast.
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Proposition 5.10.2. The rescaled arithmetic random variables

_nmodk_n

Xn(k) = —— =7~ [%]

converge in law to the uniform distribution on [0, 1].

Proof. The functions f7 (k) = n/(k+r)—[n/(k+r))] are piecewise continuous

circle maps on [0,1]. When rescaling the argument [0,...,n], the slope of
the graph becomes larger and larger for n — oo. We can use lemma (5.10.3)
below. O

Figure. Data points

n mod k)
) k

for n = 10000 and 1 < k <
n. For smaller values of k, the
data points appear random. The

points are located on the graph of
the circle map

B =3 -3

(k:7

To show the asymptotic independence of X,, with any of its translations,
we restrict the random vectors to {1,1/n% with a < 1.

Lemma 5.10.3. Let f, be a sequence of smooth maps from [0, 1] to the circle
T! = R/Z for which (f;!)"”(z) — 0 uniformly on [0, 1], then the law y, of
the random variables X, (z) = (z, f.(x)) converges weakly to the Lebesgue
measure y = dzdy on [0,1] x T

Proof. Fix an interval [a, b] in [0, 1]. Because un([a, b] x T1) is the Lebesgue
measure of {(z,y) | X,(z,y) € [a,b]} which is equal to b — a, we only need
to compare

ﬂn([aa b] X [C,C + dy])

and
pn(la,b] x [d,d + dy])
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in the limit n — oo. But p,([a,b] x [c,c + dy]) — pn([a,b] X [c,c + dy]) is
bounded above by

(£ (@) = G @1 < 157 (@)

which goes to zero by assumption.

Figure. Proof of the lemma. The

measure L, with support on the

graph of fn(x) converges to the d+dyps

Lebesgue measure on the prod- d

uct space [0,1] x T!. The con- byl
dition f"/f? — 0 assures that ¢ lon
the distribution in the y direction

smooths it out. . /

Theorem 5.10.4. Let ¢ be a fixed integer and X, (k) = (n? + ¢) mod &
on {1,...,n} For every integer r > 0,0 < a < 1, the random variables
X(k),Y(k) = X(k + r) are asymptotically independent and uncorrelated
on [0,n%].

Proof. We have to show that the discrete measures Z?:_l (X (k),Y(k))
converge weakly to the Lebesgue measure on the torus. To do so, we first
look at the measure p, = fol Z;il d(X (k),Y (k)) which is supported on
the curve t — (X(t), Y (t)), where k € [0,n% with a < 1 converges weakly
to the Lebesgue measure. When rescaled, this curve is the graph of the
circle map f,(z) = 1/x mod 1 The result follows from lemma (5.10.3). O

Remark. Similarly, we could show that the random vectors (X (k), X (k +
r1), X (k+12),...,X(k + r)) are asymptotically independent.

Remark. Polynomial maps like T(x) = 2 + ¢ are used as pseudo random
number generators for example in the Pollard p method for factorization
[84]. In that case, one considers the random variables {0,...,n — 1} de-
fined by Xo(k) = k, Xpn41(k) = T(X,(k)). Already one polynomial map
produces randomness asymptotically as n — o0o.
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Theorem 5.10.5. If p is a polynomial of degree d > 2, then the distribution
of Y(k) = p(k) mod n is asymptotically uniform. The random variables
X(k) = k and Y (k) = p(k) mod n are asymptotically independent and
uncorrelated.

Proof. The map can be extended to a map on the interval [0,n]. The graph

(z,T(x)) in {1,...,n} x {1,...,n} has a large slope on most of the square.
Again use lemma (5.10.3) for the circle maps f,(z) = p(nz) mod n on
[0,1]. O

Figure. The slope of the graph
of p(z) mod n becomes larger
and larger as n — oo. Choos-
ing an integer k € [0,n] pro-
duces essentially a random value
p(k) mod n. To prove the asymp-
totic independence, one has to
verify that in the limit, the push
forward of the Lebesque measure
on [0,n] under the map f(z) =
(z,p(z)) mod n converges in
law to the Lebesgue measure on
[0,n)2.

Remark. Also here, we deal with random variables which are difficult to
invert: if one could find Y ~'(c) in O(P(log(n)) timies steps, then factoriza-
tion would be in the complexity class P of tasks which can be computed
in polynomial time. The reason is that taking square roots modulo 7 is at
least as hard as factoring is the following: if we could find two square roots
z,y of a number modulo n, then 22 = y? mod n. This would lead to factor
ged(z — y,n) of n. This fact which had already been known by Fermat. If
factorization was a NP complete problem, then inverting those maps would
be hard.

Remark. The Mdbius function is a function on the positive integers defined
as follows: the value of y1(n) is defined as 0, if n has a factor p? with a prime p
and is (—1)*, if it contains k distinct prime factors. For example, u(14) = 1
and p(18) = 0 and x(30) = —1. The Mertens conjecture claimed hat

M(n) = (1) + - + p(n)| < CVa

for some constant C. It is now believed that M (n)/4/n is unbounded but it
is hard to explore this numerically, because the / loglog(n) bound in the
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law of iterated logarithm is small for the integers n we are able to compute
- for example for n = 10'%, one has y/loglog(n) is less then 8/3. The fact

mzliu(/{:)ﬁo

n n &
is known to be equivalent to the prime number theorem. It is also known
that limsup M(n)/y/n > 1.06 and lim inf M(n)/\/n < —1.009.

If one restricts the function p to the fimte probability spaces €2, of all
numbers < n which have no repeated prime factors, one obtains a sequence
-of number theoretical random variables X,,, which take values in {-1,1}.
Is this sequence asymptotically independent? Is the sequence u(n) random
enough so that the law of the iterated logarithm

n
limsupz ___u(k)_ <1

n—oo =7 v/2nloglog(n) ~

holds? Nobody knows. The question is probably very hard, because if it
were true, one would have

M(n) <n'/?*¢, foralle >0

which is called the modified Mertens conjecture . This conjecture is known
to be equivalent to the Riemann hypothesis, the probably most notori-
ous unsolved problem in mathematics. In any case, the connection with
the Mobius functions produces a convenient way to formulate the Rie-
mann hypothesis to non-mathematicians (see for example [14]). Actually,
the question about the randomness of u(n) appeared in classic probability
text books like Fellers. Why would the law of the iterated logarithm for
the Mobius function imply the Riemann hypothesis? Here is a sketch of
the argument: the Euler product formula - sometimes referred to as ”the
Golden key” - says

W= = Il a-p
n=1 p prime

The function ¢(s) in the above formula is called the Riemann zeta function.
With M(n) < n'/2*¢, one can conclude from the formula

1 . u(n)
@ w

n=1

that ((s) could be extended analytically from Re(s) > 1 to any of the
half planes Re(s) > 1/2 + . This would prevent roots of {(s) to be to the
right of the axis Re(s) = 1/2. By a result of Riemann, the function A(s) =
7~%/2T'(s/2)((s) is a meromorphic function with a simple pole at s = 1 and
satisfies the functional equation A(s) = A(1 — s). This would imply that
¢(s) has also no nontrivial zeros to the left of the axis Re(s) = 1/2 and



5.11. Symmetric Diophantine Equations 343

that the Riemann hypothesis were proven. The upshot is that the Riemann
hypothesis could have aspects which are rooted in probability theory.

Figure. The sequence Xy =
p(l(k)), where I(k) is the k
nonzero entry in the sequence
{p(1), w(2), u(3), ... } produces a
*random walk” Sn = S _pe; Xk-
While Xy is a deterministic se-
quence, the behavior of S, re-
sembles a typical random walk.
If that were true and the law of
the iterated logarithm would hold,
this would imply the Riemann
hypothesis.

5.11 Symmetric Diophantine Equations

Definition. A Diophantine equation is an equation f(z1,. .. ,xk) = 0, where
p is a polynomial in k integer variables x1, ..., Tk and where the polynomial

f has integer coefficients. The Diophantine equation has degree m if the
polynomial has degree m. The Diophantine equation is homogeneous, if
every summand in the polynomial has the same degree. A homogeneous
Diophantine equation is also called a form.

Example. The quadratic equation z? + y* — 2> = 0 is a homogeneous
Diophantine equation of degree 2. It has many solutions. They are called
Pythagorean triples. One can parameterize them all with two parameters
s,t with o = 2st,y = s —t2, z = s? +1?, as has been known siace antiquity
already [15].

Definition. A Diophantine equation of the form

p(mla"ka)=p(y17"'7yk)

is called a symmetric Diophantine equation. More generally, a Diophantine
equation

is called an Euler Diophantine equation of type (k,l) and degree m. It is a
symmetric Diophantine equation if k = l. [28, 35, 15, 4, 5]

Remark. An Euler Diophantine equation is equivalent to a symmetric Dio-
phantine equation if m is odd and k + 1 is even.
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Definition. A solution (z,..,23), (1,...,yk) to a symmetric Diophantine
equation p(z) = p(y) is called nontrivial, if {z1,...,2x } and {y1,...,y% }
are different sets. For example, 53 + 73 + 33 = 33 1 73 £ 53 is a trivial
solution of p(z) = p(y) with p(z,y,2) = 23 + y3 + 23.

The following theorem was proved in [68]:

Theorem 5.11.1 (Jaroslaw Wroblewski 2002). For k > m, the Diophantine
equation =" + - + 2 = ¢y 4 ... 4 yr' has infinitely many nontrivial
solutions.

Proof. Let R be a collection of different integer multi-sets in the finite
set [0,...,n]*. It contains at least n*/k! elements. The set S = {p(z) =
o' + -+ 27 € [0,vkn™?) | z € R } contains at least n*/k! numbers.
By the pigeon hole principle, there are different multi-sets z,y for which
p(z) = p(y). This is the case if n*/k! > VEkn™ or n¥~™ > kIVk. )

The proof generalizes to the case, where p is an arbitrary polynomial of
degree m with integer coefficients in the variables Tiy...,Tk.

Theorem 5.11.2. For an arbitrary polynomial p in k variables of degree
m, the Diophantine equation p(z) = p(y) has infinitely many nontrivial
solutions.

Remark. Already small deviations from the symmetric case leads to local
constraints: for example, 2p(z) = 2p(y) + 1 has no solution for any nonzero
polynomial p in k variables because there are no solutions modulo 2.

Remark. It has been realized by Jean-Charles Meyrignac, that the proof
also gives nontrivial solutions to simultaneous equations like p(z) =p(y) =
p(z) etc. again by the pigeon hole principle: there are some slots, where more
than 2 values hit. Hardy and Wright [28] (theorem 412) prove that in the
case k = 2,m = 3: for every r, there are numbers which are representable
as sums of two positive cubes in at least r different ways. No solutions
of z1 + yf = 2§ + y§ = 24 + y4 were known to those authors (28], nor
whether there are infinitely many solutions for general (k,m) = (2,m).
Mahler proved that 2® + y® + 23 = 1 has infinitely many solutions. It is
believed that 2 +43+2%+w® = n has solutions for all n. For (k,m) = (2,3),
multiple solutions lead to so called taxi-cab or Hardy-Ramanujan numbers.

Remark. For general polynomials, the degree and number of variables alone
does not decide about the existence of nontrivial solutions of p(x1,.. ., 2k) =
p(y1,. .., yx). There are symmetric irreducible homogeneous equations with
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k < m/2 for which one has a nontrivial solution. An example is p(z,y) =
z® — 4y® which has the nontrivial solution p(1, 3) = p(4, 5).

Definition. The law of a symmetric Diophantine equation p(z1,...,zx) =
p(z1,...,2x) with domain © = {0,...,n]* is the law of the random variable
defined on the finite probability space .

Remark. Wroblewski’s theorem holds because the random variable has an
average density which is larger than the lattice spacing of the integers. So,
there have to be different integers, which match. The continuum analog is
that if a random variable X on a domain § takes values in [a,b] and b—a
is smaller than the area of ), then the density fx is larger than 1 at some
point.

Remark. Wroblewski’s theorem covers cases like 22 +y% + 22 = u? +v? + w?
or 28 + 33 + 28+ w® = a® + 0% + 3 + &3 It is believed that for k > m/2,
there are infinitely many solutions and no solution for k < m/2. {59].

Remark. For homogeneous Diophantine equations, it is enough to find a
single nontrivial solution (x1,...,zx) to obtain infinitely many. The reason
is that (mz1,...,mzy) is a solution too, for any m # 0.
Here are examples of solutions. Sources are [69, 35, 15]:

k=2,m=4 (59, 158)4 = (133, 134)4 (Euler, gave algebraic solutions in 1772 and 1778)

k=2,m=5 (open problem ([35]) all sums < 1.02 - 1026 have been tested)

k=3,m=5 (3, 54, 62)5 = (24, 28, 67)% (|59], two parametric solutions by Moessner 1939, Swinnerton-Dyer)
k=3,m=6 (3,19, 22)6 = (10, 15, 23)6 ([28],Subba Rao, Bremner and Brudno parametric solutions)
k=3,m=7 open problem?

k=4.m=7 (10, 14, 123, 149)7 = (15, 90, 129, 146)7 (Ekl)

k=4,m=8 open problem?

k=5,m=7 (8, 13, 16, 19)7 = (2, 12, 15, 17, 18)7 ([59])

k=5m=8 (1, 10, 11, 20, 43)8 = (5, 28, 32, 35, 41)8.

k=5.m=9 (192, 101, 91, 30, 26)% = (180, 175, 116, 17, 12)° (Randy Ekl, 1997)

k=5,m=10 open problem

k=6,m=3 (3, 19, 22)% = (10, 15, 23)® (Subba Rao [59])

k=6,m=10 (95, 71, 32, 28, 25, 16)10 = (92, 85, 34, 34, 23, 5)10 (Randy EkI,1997)

k=6,m=11 open problem? ‘

k=7,m=10 (1, 8, 31, 32, 55, 61, 68)10 = (17, 20, 23, 44, 49, 64, 67)10 ({59))

k=7,m=12 (99, 77, 74, 73, 73, 54, 30)12 = (95, 89, 88, 48, 42, 37, 3)12 (Greg Childers, 2000)
k=7,m=13 open problem?

k=8,m=11 (67, 52, 51, 51, 39, 38, 35, 27)11 = (66, 60, 47, 36, 32, 30, 16, 7)1 (Nuutti Kuosa, 1999)
k=20,m=21 (76, 74, 74, 64, 58, 50, 50, 48, 48, 45, 41, 32, 21, 20, 10, 9, 8, 6, 4, 4)21

= (77,73, 70, 70, 67, 56, 47, 46, 38, 35, 29, 28, 25, 23, 16, 14, 11, 11, 3, 3)2! (Greg Childers, 2000)
k=22,m=22 (85, 79, 78, 72, 68, 63, 61, 61, 60, 55, 43, 42, 41, 38, 36, 34, 30, 28, 24, 12, 11, 11)22

= (83,82,77,77,76,71, 66, 65, 65, 58, 58, 54, 54, 51, 49, 48, 47, 26, 17, 14, 8, 6)22 (Greg Childers, 2000)
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Figure. Known cases of (k,m)

with nontrivial solutions Z,¥ n
of symmetric Diophantine equa- T ] o .
tions g(Z) = g(¥) with g(%) = ,
T+ 4. Wroblewski’s theo- 2

rem assures that for k > m, there T :
are solutions. The points above
the diagonal beat Wroblewski’s
theorem. The steep line m =
2k is believed to be the thresh-
old for the existence of nontrivial
solutions. Above this line, there
should be no solutions, below,
there should be nontrivial solu- "
tions.

What happens in the case k = m? There is no general result known. The
problem has a probabilistic flavor because one can look at the distribution
of random variables in the limit n — oc:

Lemma 5.11.3. Given a polynomial p(zy,...,zx) with integer coefficients
of degree k. The random variables

Xn(zlv v ,l’k) = p(xl’ oy xk)/nk

on the finite probability spaces Q, = [0,...,n]* converge in law to the
random variable X(zi,...,2,) = p(z1,..,2x) on the probability space
([0,1]%, B,P), where B is the Borel o-algebra and P is the Lebesgue mea-
sure.

Proof. Let S, (n) be the number of points (z1,...,zx) satisfying
p(z1,...,zx) € [nFa,n*b] .

This means

Sap(n)
— = Fu(b) = Fu(a),

where F, is the distribution function of X,,. The result follows from the fact
that F,,(b)— F,.(a) = Sq p(n)/n* is a Riemann sum approximation of the in-
tegral F(b)— F(a) = an , 1 dz, where A, = {z € [0, 1% | X(z1,...,2x) €
(a,b) }. O

Definition. Lets call the limiting distribution the distribution of the sym-
metric Diophantine equation. By the lemma, it is clearly a piecewise smooth
function.
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Example. For k = 1, we have F(s) = P[X(z) < s] = P[z™ < 5] = st/™/n.
The distribution for k = 2 for p(z,y) = 2% + y* and p(z,y) = 2* — y*
were plotted in the first part of these notes. The distribution function of
p(x1,2,...,2k) is a k'th convolution product Fy = F % .-+ F, where
F(s) = O(s*/™) near s = 0. The asymptotic distribution of p(z,y) = z2+y*
is bounded for all m. The asymptotic distribution of p(z,y) = z% —y?
is unbounded near s = 0 Proof. We have to understand the laws of the
random variables X (z,y) = 22+y? on [0, 1]2. We can see geometrically that
(r/4)s% < Fx(s) < s?. The density is bounded. For Y (z,y) = 2% — y?, we
use polar coordinates F(s) = {(r,6) | r2 cos(20)/2 < s }. Integration shows
that F(s) = Cs®+ f(s), where f(s) grows logarithmically as — log(s). For
m > 2, the area 2™ — y™ < s is piecewise differentiable and the derivative
stays bounded.

Remark. If p is a polynomial of k variables of degree k. If the density
f = F' of the asymptotic distribution is unbounded, then then there are
solutions to the symmetric Diophantine equation p(z) = p(y).

Corollary 5.11.4. (Generalized Wroblewski) Wroblewski’s result extends to
polynomials p of degree k for which at least one variable appears in a term
of degree smaller than k.

Proof. We can assume without loss of generality that the first variable
is the one with a smaller degree m. If the variable z; appears only in
terms of degree k — 1 or smaller, then the polynomial p maps the finite
space [0, n]%/™ x [0, n]*~1 with n¥+¥/m=1 = n¥+< elements into the interval
[min(p), max(p)] C [-CnF, CnF]. Apply the pigeon hole principle. O

Example. Let us illustrate this in the case p(z,y, 2, w) =zt +23+20+ wi.
Consider the finite probability space @, = [0,n] x [0,n] x [0, n/3] x [0,n]
with n+1/3. The polynomial maps 2, to the interval [0,4n?]. The pigeon
hole principle shows that there are matches.

Theorem 5.11.5. If the density f, of the random variable p on a surface
Q C [0,n)* is larger than k!, then there are nontrivial solutions to p(x) =
p(y)-

In general, we try to find a subsets Q C [0,n]F C R* which contains nk—8
points which is mapped by X into [0,n™~¢]. This includes surfaces, sub-
sets or points, where the density of X is large. To decide about this, we
definitely have to know the density of X on subsets. This works often be-
cause the polynomials p modulo some integer number L do not cover all
‘the conjugacy classes. Much of the research in this part of Diophantine
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equations is devoted to find such subsets and hopefully parameterize all of
the solutions.

g——v——-’-——

2.5
1.5

s

o

0.5

Figure. X (z,y,z2) = 23 4 43 + 23. Figure. X (z,y,2) = 23 4+ 3 — 28

Exercice. Show that there are infinitely many integers which can be written

in non trivially different ways as z* + yt+ 2% — W

Remark. Here is a heuristic argument for the ”rule of thumb” that the Euler
Diophantine equation z7* + - + zy' = z* has infinitely many solutions for
k > m and no solutions if k < m.

For given n, the finite probability space ) = {(z1,...,2x) | 0 < z; < nV/m }
contains n*/™ different vectors z = (x1,...,zx). Define the random variable

X(x):(a:i”%—--‘-i-arzl)l/m.

We expect that X takes values 1 /nk/m = pm/k close to an integer for large
n because Y (z) = X(z) mod 1 is expected to be uniformly distributed on
the interval [0,1) as n — oo.

How close do two values Y(z),Y (y) have to be, so that Y(z) = Y(y)?
Assume Y (z) = Y(y) + €. Then

X@)" =Xy)™+eX(y)™ ' +0(?)
with integers X (z)™, X (y)™. If X (y)™ e < 1, then it must be zero so that
Y(z) = Y(y). With the expected ¢ = n™/* and X (y)™~! < Cn(m=1/m e
see we should have solutions if ¥ > m — 1 and none for k < m — 1. Cases

like m = 3,k = 2, the Fermat Diophantine equation

24P = P
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are tagged as threshold cases by this reasoning.

This argument has still to be made rigorous by showing that the distri-
bution of the points f(z) mod 1 is uniform enough which amounts to
understand a dynamical system with multidimensional time. We see nev-
ertheless that probabilistic thinking can help to bring order into the zoo
of Diophantine equations. Here are some known solutions, some written in
the Lander notation

™ = (zy,...,26)" =2 + -+ T

m = 2k = 2: 22 + y2 = 22 Pythagorean triples like 32 + 42 = 52 (1900 BC).

m = 3k = 2: ™ + y"™ = z™ impossible, by Fermat’s theorem.

m =3 k=3 23 +13 +u3 = o3 derived from taxiceb numbers, like 103 + 93 = 13 4 123 (Viete 1591).
m = 4,k = 3: 26824404 + 153656394 + 18796760% = 20615673 (Elkies 1988 [24]) m = 5,k = 3: like
5 + y5 +z5 = w3 is open

m =4,k = 4: 30% + 1207 + 272% + 3152 = 353%. (R. Norrie 1911 [35])
m =5, k=427 +845 4+ 1105 + 1335 = 1445 (Lander Parkin 1967).

6,k = 5: :6+y6+16+u'6+06=w6 is open.

3
li

6,k = 6: (74, 234, 402, 474, 702, 894, 1077)® = 11415,

3
[

7,k = 7: (525, 439, 430, 413, 266, 258, 127)7 = 5687 (Mark Dodrill, 1999)

3
[

3
I

8, k = 8: (1324, 1190, 1088, 748, 524, 478, 223, 90)8 = 14098 {Scott Chase)

m =9, k=12, (91,91, 89, 71, 68, 65, 43, 42, 19, 16, 13, 5)® = 1039 (Jean-Charles Meyrignac,1997)

5.12 Continuity of random variables

Let X be a random variable on a probability space (£2,4,P). How can
we see from the characteristic function ¢x whether X is continuous or
not? If it is continuous, how can we deduce from the characteristic function
whether X is absolutely continuous or not? The first question is completely
answered by Wieners theorem given below. The decision about singular
or absolute continuity is more subtle. There is a necessary condition for
absolute continuity:

Theorem 5.12.1 (Riemann Lebesgue-lemma). If X € LY, then ¢x(n) — 0
for |n| — oo.

Proof. Given € > 0, choose n so large that the n’th Fourier approximation
Xn(z) = Zzz'_n dx(n)e™® satisfies || X — Xy||1 < €. For m > n, we have
ém(Xrn) = E[e?™%»] = 0 so that

|$x (m)] = |px-x, (M) < ||X = Xnlls < €.
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Remark. The Riemann-Lebesgue lemma can not be reversed. There are
random variables X for which ¢x(n) — 0, but which X is not in £!.
Here is an example of a criterion for the characteristic function which as-
sures that X is absolutely continuous:

Theorem 5.12.2 (Convexity). If a, = a_,, satisfies a,, — 0 for n — oo and
Gn+1 — 2an + an_y > 0, then there exists a random variable X € £! for
which ¢x(n) = a,.

Proof. We follow [48].

(i) bn = an — any1 decreases monotonically.

Proof: the convexity condition is equivalent to On — nt+1 < Ap—1 — Ap.

(ii) bp = an — @ny is non-negative for all n.

Proof: b, decreases monotonically. If some b, = ¢ < 0, then by (i), also
b < c for all m contradicting the assumption that b, — 0.

(iii) Also nby, goes to zero. '

Proof: Because Z:=1(ak‘ak+1) = @1 —@p41 is bounded and the summands
are positive, we must have k(ay — ak41) — 0.

(iv) Yp=; k(ak—1 — 2ax + ar41) — 0 for n — co.

Proof. This sum simplifies to ag — ap41 — n{@n — an+1. By (iiii), it goes to
0 for n — oo.

(v) The random variable Y (z) = Sreq k(ak-1 — 2ax + ag+1)Kr(z) is in
L', if Ki(z) is the Féjer kernel with Fourier coefficients 1 — l7l/(k+1).
Proof. The Féjer kernel is a positive summability kernel and satisfies

1 27
1Kkl = 5 A Ki(z) dz
for all k. The sum converges by (iv).

(vi) The random variables X and Y have the same characteristic functions.
Proof.

¢y(n) = Zk(ak—l = 2ak + ak41) Kk (n)
k=1
- ]
= ;k(ak—l ~ 20y + ag41)(1 - m)
= 3 Mo — 20k + )1 - ) =

n+1

For bounded random variables, the existence of a discrete component of
the random variable X is decided by the following theorem. It will follow
from corollary (5.12.5) given later on.
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Theorem 5.12.3 (Wiener theorem). Given X € £ with law u supported
in -, n] and characteristic function ¢ = ¢x. Then

Jim —Z|¢x(k =) PlXx=a.

z€R

Therefore, X is continuous if and only if the Wiener averages
L r—1lox(k)|* converge to 0.

Lemma 5.12.4. If i is a measure on the circle T with Fourier coefficients
fix, then for every x € T, one has

p({z}) = nqw% — Z

Proof. We follow [48]. The Dirichlet kernel

)= 35 e /2

k=—n
satisfies
Dp* f(z) = Z Flk)e™= .
k=-n
The functions

n

1 1 L
' (t) = _ — —inx ,int
falt) = gy Dol =) 2n+1kZe ¢

=—n

are bounded by 1 and go to zero uniformly outside any neighborhood of
t = z. From

T+e
lim ld(p — p({z})ds)| =0
follows
Jim (fn, p— p({z})) =
S0 that

Toh =l = 55 Y 9ln)e™ = u({a}) — 0
k=—n
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Theorem 5.12.7 (Strichartz). Let u be a uniformly h-continuous measure
on the circle. There exists a constant C' such that for all n

n

S IGP < oni).

Proof. The computation ([102, 103] for the Fourier transform was adapted
to Fourier series in [51]). In the following computation, we abbreviate du(z)
with dz:

1 n—1 1 n-1 "+92
=3 < / db e ?
k=—n 0 k—-—n
1 n—-1 - k+6)2
=3 / e~ =2k gdrdyde
0 k——'n T2
1 n-1 k+a 20 _i(z-y)k
=3 / / ——————— dfdzdy
12 Jo k__

= e/ / e_@;glﬂﬂ-(x_y)g
T Jo

nol (B ti(a—y)3)?
Z - dfdzdy

k=-n

and continue

1 n-—1 2
2 a2 < ~(z-9)* 32
S /

k=—n
e~ (52 +(a—y)3)?

Z - do| dzdy

k=—n
0o o—(E+i(z-y)3)? n2
co e [T T e g,
T2 J -0

=7 eJw (e“(“”_y)“Tz) dzxdy

<g eﬁ( e~E-v)’ 5 dxdy)1/2

o0

n2
= eﬁ(Z/ e~ @0 gy dy)*/?
£ Jk/nglo—yl<(k1)/m
o0
<10 6\/7_fclh(n_1)(ze—k2/2)l/2
k=0

Sll Ch(n_l) .
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are tagged as threshold cases by this reasoning.

This argument has still to be made rigorous by showing that the distri-
bution of the points f(z) mod 1 is uniform enough which amounts to
understand a dynamical system with multidimensional time. We see nev-
ertheless that probabilistic thinking can help to bring order into the zoo
of Diophantine equations. Here are some known solutions, some written in
the Lander notation

27 = @1,z =+ 2

m =2k = 2: % + y2 = 22 Pythagorean triples like 32 + 42 = 52 (1900 BC).

m =3k = 2: 2™ + y™ = 2™ impossible, by Fermat’s theorem.

m =3,k = 3: z3 + y3 + w3 = 3 derived from taxicab numbers, like 103 + 93 =13 4= 123 (Viete 1591).
m = 4,k = 3: 2682440% + 15365639 + 187967607 = 206156734 (Elkies 1988 [24]) m = 5,k = 3: like
1:5 + y5 + z5 = w5 is open

m =4,k = 4: 302 + 120% 4 272% 4 3154 = 353%. (R. Norrie 1911 [35])

m =5k =4275 4845 4 1105 4 1335 = 1445 (Lander Parkin 1967).

m =6,k =5: 16+y6+z6+u6+u6=w6 is open.

m =6,k = 6: (74, 234, 402, 474, 702, 894, 1077)6 = 11415,

m =17,k =7 (525,439, 430, 413, 266, 258, 127)7 = 5687 (Mark Dodrill, 1999)

m = 8,k = 8: (1324, 1190, 1088, 748, 524, 478, 223, 90)8 = 14098 (Scott Chase)

m =9,k =12, (91,91, 89, 71, 68, 65, 43, 42, 19, 16, 13, 5)° = 1039 (Jean-Charles Meyrignac,1997)

5.12 Continuity of random variables

Let X be a random variable on a probability space (2, A,P). How can
we see from the characteristic function ¢x whether X is continuous or
not? If it is continuous, how can we deduce from the characteristic function
whether X is absolutely continuous or not? The first question is completely
answered by Wieners theorem given below. The decision about singular
or absolute continuity is more subtle. There is a necessary condition for
absolute continuity:

Theorem 5.12.1 (Riemann Lebesgue-lemma). If X € £!, then ¢x(n) — 0
for |n| — oo.

Proof. Given € > 0, choose n so large that the n’th Fourier approximation
Xn(z) = Yk-_, ¢x(n)e™ satisfies [| X — X,||; < e. For m > n, we have
¢m(Xn) = E[e'™X»] = 0 so that

|8x(m)| = Ipx—x. (M) < |1 X ~ Xalls < €.
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Remark. The Riemann-Lebesgue lemma can not be reversed. There are
random variables X for which ¢x(n) — 0, but which X is not in £ .
Here is an example of a criterion for the characteristic function which as-
sures that X is absolutely continuous:

Theorem 5.12.2 (Convexity). If a,, = a_,, satisfies a, — 0 for n — 0o and
Gn+1 — 2apn + an—1 > 0, then there exists a random variable X € £ for
which ¢x(n) = a,.

Proof. We follow [48].

(1) bn = @ — an41 decreases monotonically.

Proof: the convexity condition is equivalent to a, — n+1 < Ap—1 — ap.
(1) bp = ap ~ @nyy is non-negative for all n.

Proof: b, decreases monotonically. If some b, = ¢ < 0, then by (i), also
bm < c for all m contradicting the assumption that b, — 0.

(iii) Also nb, goes to zero.

Proof: Because ZZ 1(@k—ak+1) = a1 —an 41 is bounded and the summands
are positive, we must have k(a; — ax+1) — 0.

(iv) 3o 1k(ar—1 — 2ax + ax41) — 0 for n — oo.

Proof. This sum simplifies to ag — an+1 — n(an — anyq. By (iiii), it goes to
0 for n — oo.

(v) The random variable Y (x) = Y72, k(ak—1 — 2ax + aps1)Ki(z) is in
L', if Ki(z) is the Féjer kernel with Fourier coefficients 1 — |j|/(k + 1).
Proof. The Féjer kernel is a positive summability kernel and satisfies

1 2
”KkHl:"— Kk(x) dr=1.
2 0

for all k. The sum converges by (iv).
(vi) The random variables X and Y have the same characteristic functions.
Proof.

¢y(n) = k(ak—1 — 2ax + ak+1)Ki(n)

8 T[M8

= Zk’(ak 1~ 2ak + ak41)(1 — bl —)

k_ k+1
_ il
= E k(ak-1 — 2ax + ax+1)(1 n -
E+1
n+1

O

For bounded random variables, the existence of a discrete component of
the random variable X is decided by the following theorem. It will follow
from corollary (5.12.5) given later on.
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Theorem 5.12.3 (Wiener theorem). Given X € £* with law p supported
in [-m, 7] and characteristic function ¢ = ¢x. Then

L1
Tim =" [gx(k)? =D _PIX =2]*.
n k=1 z€R

Therefore, X is continuous if and only if the Wiener averages
LS 1 lox(k)J? converge to 0.

Lemma 5.12.4. If p is a measure on the circle T with Fourier coefficients
fix; then for every x € T, one has

n

u({z}) = lim — e .
k=

Proof. We follow [48]. The Dirichlet kernel

_ y ke - Sk +1/2)0)
Dn(t)——k;nek— t72)

satisfies

Dnx f(z) = Su(f)(@) = Y f(R)e*.
k=—n
The functions

n

1 1 Lo
. — t— — —inx ,int
fnlt) = G Delt = 3) = gy 2 e

k=—n

are bounded by 1 and go to zero uniformly outside any neighborhood of
t = z. From

z-+€
tim [ lds - u({z)a) =0
follows
Jim (fn, p — p({z})) = 0
so that
Gt~ W) = 55 3 #(m)e™ — u({z}) - 0.

k=—n
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Definition. If 1 and v are two measures on (2 = T, A), then its convolution
is defined as

pev(d) = [ pA=3) dvia)
T
for any A € A. Define for a measure on [, 7] also p*(A) = u(—A).

Remark. We have i*(n) = u( Y and p*v(n) = g(n)o(n). If p =3 a;ds,
is a discrete measure, then p* = Y @;6_,,. Because px p* =3, laj|?, we
have in general

(exw){0}) = lu({=})?] -

z€T

Corollary 5.12.5. (Wiener) 3, [0({z})|? = limn 00 57 he—n lfinl*-

Remark. For bounded random variables, we can rescale the random vari-
able so that their values is in [—7, 7] and so that we can use Fourier series
instead of Fourier integrals. We have also

Zlu({x})|2= lim 515 |,u(t)l2 dt .

z€R

We turn our attention now to random variables with singular continuous
distribution. For these random variables, one does have P[X = c] = 0 for
all c. Furthermore, the distribution function Fx of such a random variable
X does not have a density. The graph of Fx looks like a Devil staircase.
Here is a refinement of the notion of continuity for measures.

Definition. Given a function h : R — [0, 00) satisfying limz_o h(z) = 0. A
measure g on the real line or on the circle is called uniformly h-continuous,
if there exists a constant C such that for all intervals I = [a,b] on T the
inequality

u(I) < Ch(l1))

holds, where |I| = b — a is the length of I. For h(z) = z® with 0 < a <1,
the measure is called uniformly a-continuous. It is then the derivative of a
o-Holder continuous function.

Remark. If 4 is the law of a singular continuous random variable X with
distribution function Fx, then F is a-Holder continuous if and only if y is
a-continuous. For general h, one calls F uniformly lip — h continuous [86).

Theorem 5.12.6 (Y. Last). If there exists C, such that Ly =t lae)? <
C - h(%) for all n > 0, then p is uniformly v/h-continuous.
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Proof. We follow [56]. The Dirichlet kernel satisfies

>l = [ [ Dty =) dutz)duty)

k=—n

and the Féjer kernel K,(t) satisfies

t
Kn(t) = n+1 ( sin(t/2)

k=—n
_ =~ |kl ke
- Dn(t)—kzz_:nn+1 k
Therefore
= k;n |k l* — /T /1r Kqa(y — z)du(z)dp(y) - (5.4)

Because fi, = fi_,, we can also sum from —n to n, changing only the

constant C. If u is not uniformly vk continuous, there exists a sequence
of intervals |Ix| — 0 with p(I;) > I\/h(|L]). A property of the Féjer kernel
K, (t) is that for large enough n, there exists 6 > 0 such that LK () >
8 > 0if 1 < njt| < /2. Choose ny, so that 1 < ng - |} < m/2. Using
estimate (5.4), one gets

ny

|_ﬂ_k_12 an (y _ :IZ)
k:Z—n, n = /T/1r n du(a:)du(y)
> ou(L)? = 61A(|L))
> Coh(=).
ny

This contradicts the existence of C such that

1 = . 2 1
- < =) .
= > Il < Ch(:)

k=—-n



354 Chapter 5. Selected Topics

Theorem 5.12.7 (Strichartz). Let u be a uniformly h-continuous measure
on the circle. There exists a constant C such that for all n

Proof. The computation ([102, 103] for the Fourier transform was adapted
to Fourier series in [51]). In the following computation, we abbreviate du(z)
with dx:

"Zlﬂlk <1 /1"1

k=—n 0 fe=wn

- k+6)2
/1 n~1 e_S_;!L
= e

k+9 2

df | i |?

e~ {W=2)k dordydd

0 j=—n n T2
1 n—-1 k+6 -—z(z Yk
=3 e/ / —————— dfdzdy
T k=-n n

ee)2n? .
=4 e/ / e—ﬁ—-—%)—"—+1(m—'y)0
T2 JO

nol (B 4iz-y)3)?

dfdxdy
k=-—n
and continue
1 n-l 2 2n2 1
LR g o f e[
P 3 [
e~ (152 +(z-1)3)*
Z ~ db)| dzdy

k=—n

0o o—(f+iz-v)3)? 2
=g . e[p[/ E——E——z—— dt]e'(’_y)2T dzdy

~(z-v)*%
=7 eJm (e YT dedy
A e sy

oo
=9 evn( @ VT do dy)'/?
=5 Jkin<le—y<(k+1)/n

<10 e\/7_rC1h(n_1)(Z e—k2/2)l/2
k=0

<1 Ch(n_l) .
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Here are some remarks about the steps done in this computation:
(1) is the trivial estimate

1 n—1 e k+6)?
el > 9 >1
n
0 k=—n

(@)
/1r ¥ dua)duy) = /T e~V du(z) /T ek dpu(z) = Ay = |iwl?

(3) uses Fubini’s theorem.
(4) is a completion of the square.
(5) is the Cauchy-Schwartz mequahty,

(6) replaces a sum and the integral fo by [7°.,

(7) uses [ 9—(—11(—:—@ = /7 because
0o ,—(t/n+b)?
/ T = A
PV

for all n and complex b,

(8) is Jensen’s inequality.

(9) splits the integral over a sum of small intervals of strips of width 1/n.
(10) uses the assumption that p is h-continuous.

(11) This step uses that
o}
(Z e—k2/2)1/2
k=0

is a constant. O
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