Project Proposal deadline: tonight, 12:59pm

Course Notes: https://snap-stanford.github.io/cs224w-notes/
Help us write the course notes — we will give generous bonuses!

Graph Neural Networks

https://snap-stanford.github.io/cs224w-notes/

Node Embeddings

Intuition: Map nodes to d-dimensional
embeddings such that similar nodes in the
graph are embedded close together

Input graph 2D node embeddings

How to learn mapping function f?

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 2

Node Embeddings

Goal: Map nodes so that similarity in the
embedding space (e.g., dot product)
approximates similarity (e.g., proximity)
in the network

o Zv
<\\/‘”\ encode nodes B
\ / — e
ENC(v)
d-dimensional

Input network embedding space

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Node Embeddings

-

(Y

Need to define!

Goal: similarity(u,v) ~ z,, z,

\ .er
\ :

*
.
.
.
.
.*
.
.*
.
Py
-
.
......

\\
>

d-dimensional

Input network
P embedding space

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Two Key Components

Encoder: Map a node to a low-dimensional

vector: d-dimensional
embedding
ENC(0) = 2,

node in the/input graph

Similarity function defines how relationships
in the input network map to relationships in
the embedding space:

.. . T
_similarity (u, v) ~ z, 2,
Similarity of u and v dot product between

in the network node embeddings

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 5

From “Shallow” to “"Deep”

So far we have focused on “shallow”
encoders, i.e. embedding lookups:

embedding vector for
embedding a specific node
matrix

\
7 =

> Dimension/size of
embeddings

T
one column per node

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 6

Shallow Encoders (Lec. 09: 10/23)

. Embedding
Shallow encoders: ookup
One-layer of data
transformation
. . Dot product
A single hidden layer Node u | ”;
maps node u to O 2y By,
embedding z,, via Node v |
function f(), e.g.
Zy = f(Zv,U € Np (u))
Embedding
lookup

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 7

Shallow Encoders (Lec. 09: 10/23)

Limitations of shallow embedding methods:
O(|V|) parameters are needed:

No sharing of parameters between nodes

Every node has its own unique embedding

Inherently “transductive”:

Cannot generate embeddings for nodes that are not seen
during training

Do not incorporate node features:

Many graphs have features that we can and should
leverage

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Today: Deep Graph Encoders

Today: We will now discuss deep methods
based on graph neural networks:

multiple layers of
ENC(U) — non-linear transformations
of graph structure

Note: All these deep encoders can be
combined with node similarity functions
defined in the last lecture

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Deep Graph Encoders

Graph Regularization, Graph
convolutions e.g., dropout convolutions
& &>
& &
Activation Q Q
function &
/ >

A,

y
'y

Output: Node embeddings Also,
we can embed larger network

structures, subgraphs, graphs

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 10

Modern ML Toolbox

Patterns of Local s
Contrast S

Face
Features

,0

O

| >
. 31
v
X

74
"Q
A

52
£
@,
X
"’:4-1
‘1
AN
K

K&
Joys
ofs
X

5
O
3
7
QG
J
X

s
P
RS
N
PaN
¢
B

QG
SN
29
J
0y

AN
%
@,

Images

Text/Speech

Modern deep learning toolbox is

designed for simple sequences & grids

UTC LCORUVEC, JStalltolra U

Why is it Hard?

But networks are far more complex!

Arbitrary size and complex topological structure (i.e.,
no spatial locality like grids)

Text

Images

No fixed node ordering or reference point
Often dynamic and have multimodal features

12

ldea: Convolutional Networks

CNN on an image:

}\/4
O8O

Feature maps

Subsampling Convolutions Subsampling Fully connected

Goal is to generalize convolutions beyond simple lattices
Leverage node features/attributes (e.g., text, images)

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 13

From Images to Graphs

Single CNN layer with 3x3 filter:

O

Image Graph

Transform information at the neighbors and combine it:

Transform “messages” h; from neighbors: W; h;
Add them up:),; W; h;

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 14

Real-World Graphs

But what if your graphs look like this?

a @
o 7 or this: . o RS A
4 o .o 70 o o ®
[[. ® ®
® ® O o o °
Examples:

Biological networks, Medical networks, Social

networks, Information networks, Knowledge graphs,
Communication networks, Web graph, ...

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 15

A Naive Approach

Join adjacency matrix and features
Feed them into a deep neural net:

hidden layer 1 hidden layer 2 hidden layer 3

input layer
A B C D E Feat Q
() Q_ output layer
A o 1 1 1 O 1 0
@:
Blft o o1 1 o0 o0 -
Cl 10010 01 G u
G
D 11 1 0 1 1 1 c*
ELo 1010 1 0 o

Issues with this idea:

O(N) parameters
Not applicable to graphs of different sizes
Not invariant to node ordering

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 16

Outline of Today’s Lecture

12/6/18

Basics of deep learning for graphs
Graph Convolutional Networks
Graph Attention Networks (GAT)

Practical tips and demos

L3

Basics of Deep Learning for
Graphs

Content

Local network neighborhoods:
Describe aggregation strategies
Define computation graphs

Stacking multiple layers:
Describe the model, parameters, training

How to fit the model?

Simple example for unsupervised and
supervised training

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

19

Assume we have a graph G:
V is the vertex set

A is the adjacency matrix (assume binary)

X € R™%IVl is a matrix of node features
Node features:

Social networks: User profile, User image

Biological networks: Gene expression profiles, gene
functional information

No features:

Indicator vectors (one-hot encoding of a node)
Vector of constant 1: [1, 1, ..., 1]

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

20

[Kipf and Welling, ICLR 2017]

Graph Convolutional Networks

ldea: Node’s neighborhood defines a
computation graph

i

Determine node Propagate and
computation graph transform information

Learn how to propagate information across the
graph to compute node features

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 21

ldea: Aggregate Neighbors

Key idea: Generate node embeddings based
on local network neighborhoods

ARGET NODE ® A‘:‘I)

"

a

A .”“

. |
K A e .
A' e
A < > TETTTETYPITTTTRITY ‘ V'
3
Q.’
.0

°-n
INPUTGRAPH T A

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

|ldea: Aggregate Neighbors

Intuition: Nodes aggregate information from
their neighbors using neural networks

TARGET NODE

l

A
‘/ B «

INPUT GRAPH

Neural networks

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 23

|ldea: Aggregate Neighbors

Intuition: Network neighborhood defines a

computation graph
Every node defines a computation .
graph based on its neighborhood! /

INPUT GRAPH

o o ® o O
]] o []]
R o® % o %mgé. T .% o &
O2% A% Alve. 2 A &S
i 9® %e see® e ie®t s el e G, o

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 24

Deep Model: Many Layers

Model can be of arbitrary depth:

Nodes have embeddings at each layer
Layer-0 embedding of node u is its input feature, x,,

Layer-K embedding gets information from nodes that
are K hops away

TARGET NODE ‘4‘< """"""""""" © XC
! Layer-2 " ® XA

| |
“w ___________ ‘ X
, < e ol b

N
INPUTGRAPH o e A

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 25

Neighborhood Aggregation

Neighborhood aggregation: Key distinctions
are in how different approaches aggregate
information across the layers

TARGET NODE K3 4‘: ©
1 What is in the box?.«

A

'y B
/ A 4_ ? 4. ‘ 4.2

' N
INPUTGRAPH T A

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 26

Neighborhood Aggregation

Basic approach: Average information from
neighbors and apply a neural network

(1) average messages
ARGET NODE from nei gh bors ® A‘;jf_ c

A
. o
/ n SR Q«-g;l
Oy
Y /Y) S A

(2) apply neural network

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 27

The Math: Deep Encoder

Basic approach: Average neighbor messages
and apply a neural network

Previous layer
embedding of v

, Vke{l,...,K}

Non-linearity
(e.g., RelLU)

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 28

Training the Model

How do we train the model to
generate embeddings?

o
.t

Z, ® <

Need to define a loss function on the embeddings

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 29

Model Parameters

0 Trainable weight matrices
h, =x, (i.e., what we learn)

/\

hk—l
hy =c |WY > —“—+ HBghl™'|, Vke{l,. K}
St NG

z, = h’*
We can feed these embeddings into any loss
function and run stochastic gradient descent to

train the weight parameters

Equivalently I ~ I
rewritten in H*Y =4 (H(Z)W(g) + AH(Z)W§))

vector form:

Ve
/8\

with A_ p— D_§AD_§ HO — [hgl)T,...,hS\lf)T]T

12/6/18 30

Unsupervised Training

Train in an unsupervised manner:

Use only the graph structure
“Similar” nodes have similar embeddings
Unsupervised loss function can be anything

from the last section, e.g., a loss based on
Random walks (node2vec, DeepWalk, struc2vec)
Graph factorization
Node proximity in the graph

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 31

Supervised Training

Directly train the model for a supervised task
(e.g., node classification)

_ Safe or toxic
Safe or toxic

drug?
drug? .
|
N
v%%
LIRS
P ® E.g., a drug-drug

interaction network

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 32

Supervised Training

Directly train the model for a supervised task
(e.g., node classification)

L= @ilog(c(z]B)) + (1 —[y) log(1 — o(2]8))

U
veV
Encoder output: / Classification
node embedding weights
Node class
Safe or toxic drug? label
1
.

T a®
Ney e=e? .
12/6/18 ~_ o0® Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 33

Model Design: Overview

(1) Define a neighborhood
aggregation function

Z)@® <«

(2) Define a loss function on the
embeddings

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 34

Model Design: Overview

(3) Train on a set of nodes, i.e.,
a batch of compute graphs

INPUT GRAPH

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 35

Model Design: Overview

(4) Generate embeddings
/ for nodes as needed

Even for nodes we never
trained on!

INPUT GRAPH

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 36

Inductive Capability

The same aggregation parameters are shared
for all nodes:

The number of model parameters is sublinear in
|V'| and we can generalize to unseen nodes!

’* oe0 Wi Br o o
/ ‘ ﬁ “shared parameters ‘ i

INPUT GRAPH Compute graph for node A Compute graph for node B

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 37

Inductive Capability: New Graphs

-~ S
o s

Train on one graph Generalize to new graph

Inductive node embedding Generalize to entirely unseen graphs

E.g., train on protein interaction graph from model organism A and generate
embeddings on newly collected data about organism B

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 38

Inductive Capability: New Nodes

Generate embedding
Train with snapshot New node arrives for new node

Many application settings constantly encounter
previously unseen nodes:

E.g., Reddit, YouTube, Google Scholar
Need to generate new embeddings “on the fly”

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 39

Summary So Far

Recap: Generate node embeddings by
aggregating neighborhood information

We saw a basic variant of this idea

Key distinctions are in how different approaches
aggregate information across the layers

Next: Describe GraphSAGE graph neural
network architecture

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 40

Outline of Today’s Lecture

12/6/18

Basics of deep learning for graphs ‘/

L3

Graph Attention Networks (GAT)

Graph Convolutional Networks

Practical tips and demos

Graph Convolutional
Networks and GraphSAGE

[Hamilton et al., NIPS 2017]

GraphSAGE Idea

So far we have aggregated the neighbor
messages by taking their (weighted) average
Can we do better?

ARGET NODE ® 4‘:)

l """
A
A Q’Q" ‘
. i
3 AT .
A * ? < ------------------ . :
H '.,... ------
* .."u
0..
‘e

' N
INPUTGRAPH T A

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 43

GraphSAGE Idea

Any differentiable function that
maps set of vectors in N(u) to
a single vector

TARGET NODE

l
S

INPUT GRAPH

hy =0 ([A-Acc({h; ', Yu € N(v)}), Bshi ')

(Y

Apply L2 normalization for each node embedding at every layer

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 44

Neighborhood Aggregation

Simple neighborhood aggregation:

hkz—l
hi =0 (W, » =%~ +Byhj™
U N(w) =

ueN (v)

GraphSAGE: Concatenate neighbor embedding
and self embedding

/\

hy = o ([Wy - aca ({hi~',Vu € N(v)}),Bihi ™ '])

v

Generalized aggregation

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Neighbor Aggregation: Variants

Mean: Take a weighted average of neighbors

hk—l
AGG= D NG

ueN (v)

Pool: Transform neighbor vectors and apply
symmetric vector function

AGG =

v

Element-wise mean/max

({Qhf~!,Yu € N(v)})

LSTM: Apply LSTM to reshuffled of neighbors
AGG = LSTM ([hf~!, vu € n(N(v))])

12/6/18

d CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Recap: GCN, GraphSAGE

Key idea: Generate node embeddings based on local
neighborhoods

Nodes aggregate “messages” from their neighbors using
neural networks

Graph convolutional networks:

Basic variant: Average neighborhood information and stack
neural networks
GraphSAGE:

Generalized neighborhood aggregation

k—1 k—1
h* h

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 47

Efficient Implementation

12/6/18

Many aggregations can be performed
efficiently by (sparse) matrix operations
Let "1 =4, WY

hk—l
Z \Nu(v)| — HY = D1 AH!

u€eN (v)
Another example: GCN (Kipf et al. 2017)

ok — p=1/2 A pl/2 prk—1

More on Graph Neural Networks

Tutorials and overviews:
Relational inductive biases and graph networks (Battaglia et al., 2018)
Representation learning on graphs: Methods and applications (Hamilton et al., 2017)

Attention-based neighborhood aggregation:

Graph attention networks (Hoshen, 2017; Velickovic et al., 2018; Liu et al., 2018)
Embedding entire graphs:

Graph neural nets with edge embeddings (Battaglia et al., 2016; Gilmer et. al., 2017)

Embedding entire graphs (Duvenaud et al., 2015; Dai et al., 2016; Li et al., 2018) and graph pooling
(Ying et al., 2018, Zhang et al., 2018)

Graph generation and relational inference (You et al., 2018; Kipf et al., 2018)
How powerful are graph neural networks(Xu et al., 2017)

Embedding nodes:

Varying neighborhood: Jumping knowledge networks (Xu et al., 2018), GeniePath (Liu et al., 2018)
Position-aware GNN (You et al. 2019)

Spectral approaches to graph neural networks:
Spectral graph CNN & ChebNet (Bruna et al., 2015; Defferrard et al., 2016)
Geometric deep learning (Bronstein et al., 2017; Monti et al., 2017)

Other GNN techniques:
Pre-training Graph Neural Networks (Hu et al., 2019)
GNNExplainer: Generating Explanations for Graph Neural Networks (Ying et al., 2019)

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 49

Outline of Today’s Lecture

12/6/18

Basics of deep learning for graphs ‘/
Graph Convolutional Networks

Graph Attention Networks (GAT)

L3

Practical tips and demos

Graph Attention Networks

Simple Neighborhood Aggregation

Recap: Simple neighborhood aggregation:

u€eN (v)
Graph convolutional operator:

Aggregates messages across neighborhoods, N(v)

a,, = 1/|N(v)| is the weighting factor (importance) of
node u’s message to node v

= a,,, is defined explicitly based on the structural
properties of the graph

— All neighbors u € N(v) are equally important to
node v

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 52

[Velickovic et al., ICLR 2018; Vaswani et al., NIPS 2017]

Graph Attention Networks

Can we do better than simple neighborhood
aggregation?

Can we let weighting factors a,,, to be implicitly
defined?

Goal: Specify arbitrary importances to different
neighbors of each node in the graph

Idea: Compute embedding h¥ of each node in
the graph following an attention strategy:

Nodes attend over their neighborhoods’ message

Implicitly specifying different weights to different
nodes in a neighborhood

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 53

Attention Mechanism (1)

Let a,,,, be computed as a byproduct of an
attention mechanism a:

Let a compute attention coefficients e,,,, across pairs
of nodes u, v based on their messages:

— k—1 k—1
Cvu = a(thu) thv)
e, indicates the importance of node u’'s message to node v

Normalize coefficients using the softmax function in
order to be comparable across different
neighborhoods:

_ exp (evu)
ZkEN(v) eXp (evk)

hzlj — O-(ZueN(v) avuwkhﬁ_l)
Next: What is the form of attention mechanism a?

avu

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 54

Attention Mechanism (2)

Attention mechanism a:

The approach is agnostic to the choice of a

E.g., use a simple single-layer neural network
a can have parameters, which need to be estimates

Parameters of a are trained jointly:

Learn the parameters together with weight matrices (i.e., other
parameter of the neural net) in an end-to-end fashion

Multi-head attention: Stabilize the learning process of
attention mechanism ;

Attention operations in a given layer are independently
replicated R times (each replica with different parameters)

Outputs are aggregated (by concatenating or adding)

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 55

Properties of Attentional Mechanism

Key benefit: Allows for (implicitly) specifying different
importance values (a,,) to different neighbors

Computationally efficient:

Computation of attentional coefficients can be parallelized
across all edges of the graph

Aggregation may be parallelized across all nodes
Storage efficient:

Sparse matrix operations do not require more
than O(V+E) entries to be stored

Fixed number of parameters, irrespective of graph size
Trivially localized:

Only attends over local network neighborhoods
Inductive capability:

It is a shared edge-wise mechanism
It does not depend on the global graph structure

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 56

GAT Example: Cora Citation Net

Method Cora
MLP 55.1%
'.. s ManiReg (Belkin et al., 2006) 59.5%
% 10?,1:5’,:..,:.;_. 200 SemiEmb (Weston et al., 2012) 59.0%
o e B e LP (Zhu et al., 2003) 68.0%
S On e ,.if.:..ﬁ-:. DeepWalk (Perozzi et al., 2014) 67.2%
e al® ICA (Lu & Getoor, 2003) 75.1%
oS st & eSS Planetoid (Yang et al), 2016) 75.7%
! 2 3 = Chebyshev (Defferrard et al., 2016) 81.2%
T T L GCN (Kipf & Welling, 2017) 81.5%
0 o & do® K g GAT 83.3%
® % °@ 1 3
e _o,g.f.?oh o improvement w.r.t GCN 1.8%
2 haat Attention mechanism can be used with
many different graph neural network
models
’ f In many cases, attention leads to

performance gains

t-SNE plot of GAT-based node embeddings:
Node color: 7 publication classes
Edge thickness: Normalized attention coefficients between nodes i and
J, across eight attention heads, Zk(afj + a]l‘i)

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 57

Outline of Today’s Lecture

12/6/18

Basics of deep learning for graphs ‘/
Graph Convolutional Networks (ch

Graph Attention Networks (GAT) ‘/

Practical tips and demos i

i phs, http://cs224w.stanford.edu

Example Application

Application: Pinterest

Saved from .
therecipeblog.com Visit
o 9 people tried it 90%
A s
&5 Nhvictina cnvnAd A Wikalhan
10/172/10 Laralacl
Lot L

300M users
4+B pins, 2+B boards

vec, Stanford CS224W: Machine Learning with Graphs

60

Application: Pinterest

Human curated collection of pins

Pin: A visual bookmark someone has
saved from the internet to a board
they’ve created.

Pin: Image, text, link

ﬂ Wy
ﬂﬂ“dﬁwm

||||||||||||||||||||||||

b 1 S
| ﬂlﬂ"ﬂmwg (ﬁ:‘fe"

PPPPPP

nnnnnnnnnn

Board: A collection of ideas (pins having something in common)

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 61

Pinterest Graph

00000090(?? ?0 mQ
s

Graph: 2B pins, 1B boards, 20B edges
Graph is dynamic: Need to apply to new nodes
without model retraining
Rich node features: Content, images

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

[Ying et al., WWW 2018]

PinSage: Overview

PinSage graph convolutional network:

Goal: Generate embeddings for nodes (e.g.,
Pins/images) in a web-scale Pinterest graph containing
billions of objects
Key Idea: Borrow information from nearby nodes

E.g., bed rail Pin might look like a garden fence, but gates and

Pin embeddings are essential to various tasks like
recommendation of Pins, classification, clustering, ranking

Services like “Related Pins”, “Search”, “Shopping”, “Ads”

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 63

Embedding Nodes

MMMMMM

‘‘‘‘‘‘‘‘‘‘‘‘‘

Input d-dimensional
embedding space

Goal: Map nodes to d-dimensional
embeddings such that nodes that are related
are embedded close together

10/17/19 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 64

Task Overview

Task: Recommend related pins to users

e
\:”_,‘Mﬁﬁ-w, o4 :'tﬁﬂ

N MW Task: Learn node
/ B embeddings z; such
SUCCESSFUL
‘ b RECOMMENDATION that

d (ankel: ankez)
< d(Zcake1r Zsweater)

BAD RECOMMENDATION

Challenges:

Massive size: 3 billion nodes, 20 billion edges
Heterogeneous data: Rich image and text features

PInSAGE Training

Goal: Identify target pin among 3B pins
Issue: Need to learn with resolution of 100 vs. 3B
Idea: Use harder and harder negative samples
Include more and more hard negative samples for
each epoch

66

PInSAGE Efficiency

How to scale the training as well as inference
of node embeddings to graphs with billions
of nodes and tens of billions of edges?

10,000X larger dataset than any previous graph
neural network application

Key innovations:

Sub-sample neighborhoods for efficient GPU
batching

Producer-consumer CPU-GPU training pipeline
Curriculum learning for negative samples
MapReduce for efficient inference

67

PinSage: Key Innovations (1)

Three key innovations:
On-the-fly graph convolutions

Sample the neighborhood around a node and
dynamically construct a computation graph

Perform a localized graph convolution around a
particular node

Does not need the entire graph during training

gyt < Sampled neighbor nodes
S o0 > & @900 O TMPEInCImOTnOTe
. . ‘ . ‘ . N | | ‘ Learnable aggregator-2
"""" o ™ 3¢ e S 4 S
35 ® o P ... % PP ® <:| Sampled neighbors of neighbors

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 68

PinSage: Key Innovations (2)

Three key innovations:
On-the-fly graph convolutions
Constructing convolutions via random walks

Performing convolutions on full neighborhoods is infeasible:

How to select the set of neighbors of a node to convolve over?

Importance pooling: Define importance-based
neighborhoods by simulating random walks and selecting
the neighbors with the highest visit counts

Efficient MapReduce inference

Bottom-up aggregation of node embeddings lends itself to
MapReduce

Decompose each aggregation step across all nodes into three
operations in MapReduce, i.e., map, join, and reduce

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 69

PinSage: Experiments

12/6/18

Baselines:

Visual: Nearest neighbors
of CNN visual embeddings

for recommendations Method Hit-rate | MRR
. Visual 17% 0.23
Annotation: Nearest Annotation 1972 | 019
neighbors in terms of Combined 27% | 0.37
Word2vec embeddings max-pooling 39% | 037
mean-pooling 41% 0.51

Combined: Concatenate mean-pooling-xent | 29% | 035
: . mean-pooling-hard 46% 0.56
embEddmgS' PinSage 67% 0.59

Uses exact same data and
loss function as PinSage

PinSage gives 150% improvement in hit rate and 60%
improvement in MRR over the best baseline

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

70

Example Pin Recommendations

Visual

Annot.

PinSage

How Lo Grow

Swiss Chard
—

Pixie is a purely graph-based method that uses biased random walks to generate ranking scores by simulating random
walks starting at query Pin. Items with top scores are retrieved as recommendations [Eksombatchai et al., 2018]

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 71

PINSAGE Recommendations

10/17/19 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 72

PINSAGE Recommendations

If it's not

a shih Tzu,

KEEP
CALM
"o

LOVE
SHIH TZUS

10/17/19 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 73

General Tips and Practical
Demos

General Tips

Data preprocessing is important:

Use renormalization tricks
Variance-scaled initialization

Network data whitening

ADAM optimizer:

ADAM naturally takes care of decaying the learning rate
RelLU activation function often works really well
No activation function at your output layer:

Easy mistake if you build layers with a shared function
Include bias term in every layer

GCN layer of size 64 or 128 is already plenty

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 75

Debugging Deep Networks

Debug?!:
Loss/accuracy not converging during training

Important for model development:
Overfit on training data:

Accuracy should be essentially 100% or error close to 0

If neural network cannot overfit a single data point,
something is wrong

Scrutinize your loss function!
Scrutinize your visualizations!

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 76

Demo: Human Disease Network

Human Disease Network X Marinka

< C { @ snap.stanford.edu/deepnetbio-ismb/ipynb/Human+Disease+Ne

Q w & Q :

Embedding the Human Disease Network

(This demo is a part of Deep Learning for Network Biology tutorial.)

Human disease network is a network, in which nodes represent diseases and two diseases are connected to each other if they share at least one gene in which
mutations are associated with both diseases.

The network is described in Goh et al., The Human Disease Network, PNAS 2007.

The figure below show the human disease network.

Although the layout of the network was generated independently of any knowledge of disease classes, the resulting network is naturally and visibly clustered
according to major disease classes (e.g., bone, cancer, cardiovascular, skeletal, or metabolic diseases; each disease class is represented by a different color).
The size of a node is proportional to the number of genes participating in the corresponding disease.

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 77

Demo: Protein Interaction Prediction

Graph Convolutional Predictic x Marinka

< CcC O @Snap.stanford.edu'(lt—:%p\:~,11>n1—\>,H:)";\,'m‘(}r~.,;‘r'A(i<:r1\,<:M'\<)H.—:\+P ediction+of+Protein+Interactions+in+Yeast.html Q v < 3

Graph Convolutional Prediction of Protein Interactions in Yeast

(This demo is a part of Deep Learning for Network Biology tutorial.)

In this example, we demonstrate the utility of deep learning methods for an important prediction problem on biological graphs. In particular, we consider the
problem of predicting protein-protein interactions (PPIs).

Protein-protein interactions (PPIs) are essential to almost every process in a cell. Understanding PPIs is crucial for understanding cell physiology in normal and
disease states. Furthermore, knowledge of PPlIs can be used:

« for drug development, since drugs can affect PPIs,
* to assign roles (i.e., protein functions) to uncharacterized proteins,
+ to characterize the relationships between proteins that form multi-molecular complexes, such as the proteasome.

We represent the totality of PPIs that happen in a cell, an organism or a specific biological context with a protein-protein interaction network. These networks
are mathematical representations of all physical contacts between proteins in the cell.

The development of large-scale PPI screening techniques, especially high-throughput affinity purification combined with mass-spectrometry and the yeast two-
hybrid assay, has caused an explosion in the amount of PPI data and the construction of ever more complex and complete interaction networks. For example,
the figure below is a graphical representation of three different types of protein-protein interaction networks in yeast S. cerevisiae. The structure of the binary
interaction network is obviously different from the structure of the co-complex interaction network. The network structure of the literature-curated dataset
resembles that of the co-complex dataset, even though the literature-curated datasets are reported to contain mostly binary interactions.

However, current knowledge of protein-protein interaction networks is both incomplete and noisy, as PPI screening techniques are limited in how many true
interactions they can detect. Furthermore, PPI screening techniques often have high false positive and negative rates. These limitations present a great
opportunity for computational methods to predict protein-protein interactions.

Binary Co-complex Literature

(Y2H-union) (Combined-AP/MS) (LC-multiple)

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 78

Outline of Today’s Lecture

12/6/18

Basics of deep learning for graphs ‘/
Graph Convolutional Networks ‘/

Graph Attention Networks (GAT) ‘/

Practical tips and demos ‘/

