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¡ Intuition: Map nodes to 𝑑-dimensional 
embeddings such that similar nodes in the 
graph are embedded close together 
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f (    )=
Input graph 2D node embeddings

How to learn mapping function 𝒇?



¡ Goal: Map nodes so that similarity in the 
embedding space (e.g., dot product) 
approximates similarity (e.g., proximity) 
in the network 
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Input network
d-dimensional 

embedding space
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similarity(u, v) ⇡ z>v zuGoal:

Need to define!

Input network d-dimensional 
embedding space



¡ Encoder: Map a node to a low-dimensional 
vector:

¡ Similarity function defines how relationships 
in the input network map to relationships in 
the embedding space: 
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enc(v) = zv
node in the input graph

d-dimensional 
embedding

Similarity of u and v
in the network

dot product between 
node embeddings

similarity(u, v) ⇡ z>v zu



¡ So far we have focused on “shallow” 
encoders, i.e. embedding lookups:
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Z = Dimension/size of 
embeddings

one column per node 

embedding 
matrix

embedding vector for 
a specific node



Shallow encoders:
§ One-layer of data 

transformation
§ A single hidden layer 

maps node 𝑢 to 
embedding 𝒛% via 
function 𝑓(), e.g.
𝒛% = 𝑓 𝒛(, 𝑣 ∈ 𝑁- 𝑢

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 7



¡ Limitations of shallow embedding methods:
§ O(|V|) parameters are needed: 

§ No sharing of parameters between nodes
§ Every node has its own unique embedding  

§ Inherently “transductive”: 
§ Cannot generate embeddings for nodes that are not seen 

during training

§ Do not incorporate node features:
§ Many graphs have features that we can and should 

leverage
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¡ Today: We will now discuss deep methods 
based on graph neural networks:

¡ Note: All these deep encoders can be 
combined with node similarity functions 
defined in the last lecture
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enc(v) =
multiple layers of 

non-linear transformations 
of graph structure
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…

Output: Node embeddings Also, 
we can embed larger network 
structures,  subgraphs, graphs
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Images

Text/Speech

Modern deep learning toolbox is 
designed for simple sequences & grids



But networks are far more complex!
§ Arbitrary size and complex topological structure (i.e., 

no spatial locality like grids)

§ No fixed node ordering or reference point
§ Often dynamic and have multimodal features

12

vs.

Networks Images

Text

Jure Leskovec, Stanford University



CNN on an image:
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Goal is to generalize convolutions beyond simple lattices
Leverage node features/attributes (e.g., text, images)

12/6/18



Single CNN layer with 3x3 filter:

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 14

End-to-end learning on graphs with GCNs Thomas Kipf

Convolutional neural networks (on grids)

5

(Animation by  
Vincent Dumoulin)

Single CNN layer with 3x3 filter:

Image Graph
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Transform information at the neighbors and combine it:
§ Transform “messages” ℎ/ from neighbors: 𝑊/ ℎ/
§ Add them up: ∑/𝑊/ ℎ/



But what if your graphs look like this?
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End-to-end learning on graphs with GCNs Thomas Kipf

or this:

Graph-structured data

6

… …

…

Input

Hidden layer Hidden layer

ReLU

Output

ReLU

What if our data looks like this?

End-to-end learning on graphs with GCNs Thomas Kipf

or this:

Graph-structured data

6

… …

…

Input

Hidden layer Hidden layer

ReLU

Output

ReLU

What if our data looks like this?

or this:
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¡ Examples:
Biological networks, Medical networks, Social 
networks, Information networks, Knowledge graphs, 
Communication networks, Web graph, …



¡ Join adjacency matrix and features
¡ Feed them into a deep neural net:

¡ Issues with this idea:
¡ Issues with this idea:
§ 𝑂(𝑁) parameters
§ Not applicable to graphs of different sizes
§ Not invariant to node ordering
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End-to-end learning on graphs with GCNs Thomas Kipf

A    B    C    D    E
A
B
C
D
E

0     1     1     1     0          1     0
1     0     0     1     1          0     0
1     0     0     1     0          0     1
1     1     1     0     1          1     1
0     1     0     1     0          1     0

Feat

A naïve approach

8

• Take adjacency matrix     and feature matrix   

• Concatenate them  

• Feed them into deep (fully connected) neural net 

• Done?

Problems:

• Huge number of parameters 
• No inductive learning possible

?A

C

B

D

E

[A,X]
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1. Basics of deep learning for graphs

2. Graph Convolutional Networks

3. Graph Attention Networks (GAT)

4. Practical tips and demos
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¡ Local network neighborhoods:
§ Describe aggregation strategies
§ Define computation graphs

¡ Stacking multiple layers:
§ Describe the model, parameters, training
§ How to fit the model?
§ Simple example for unsupervised and 

supervised training 
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¡ Assume we have a graph 𝐺:
§ 𝑉 is the vertex set
§ 𝑨 is the adjacency matrix (assume binary)
§ 𝑿 ∈ ℝ:×|=| is a matrix of node features
§ Node features:

§ Social networks: User profile, User image
§ Biological networks: Gene expression profiles, gene 

functional information
§ No features:

§ Indicator vectors (one-hot encoding of a node)
§ Vector of constant 1: [1, 1, …, 1]
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Idea: Node’s neighborhood defines a 
computation graph
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Determine node 
computation graph

𝑖

Propagate and
transform information

𝑖

Learn how to propagate information across the 
graph to compute node features

[Kipf and Welling, ICLR 2017]



¡ Key idea: Generate node embeddings based 
on local network neighborhoods 
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¡ Intuition: Nodes aggregate information from 
their neighbors using neural networks
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Neural networks



¡ Intuition: Network neighborhood defines a 
computation graph
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Every node defines a computation 
graph based on its neighborhood!



¡ Model can be of arbitrary depth:
§ Nodes have embeddings at each layer
§ Layer-0 embedding of node 𝑢 is its input feature, 𝑥𝑢
§ Layer-K embedding gets information from nodes that 

are K hops away
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INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

xA

xB

xC

xE
xF

xA

xA

Layer-2

Layer-1
Layer-0



¡ Neighborhood aggregation: Key distinctions 
are in how different approaches aggregate 
information across the layers
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INPUT GRAPH

TARGET NODE B

D
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?

?

?

?

What is in the box?



¡ Basic approach: Average information from 
neighbors and apply a neural network
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INPUT GRAPH

TARGET NODE B

D
E

F
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A

B
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(1) average messages 
from neighbors 

(2) apply neural network



¡ Basic approach: Average neighbor messages 
and apply a neural network
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Average of neighbor’s 
previous layer embeddings

Initial 0-th layer embeddings are 
equal to node features

Embedding after K 
layers of neighborhood 

aggregation 

Non-linearity 
(e.g., ReLU)

Previous layer 
embedding of vh0

v = xv

hk
v = �

0

@Wk

X

u2N(v)

hk�1
u

|N(v)| +Bkh
k�1
v

1

A , 8k 2 {1, ...,K}

zv = hK
v



𝒛@

How do we train the model to 
generate embeddings?

Need to define a loss function on the embeddings
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We can feed these embeddings into any loss 
function and run stochastic gradient descent to 

train the weight parameters 
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Trainable weight matrices 
(i.e., what we learn) h0

v = xv

hk
v = �

0

@Wk

X

u2N(v)

hk�1
u

|N(v)| +Bkh
k�1
v

1

A , 8k 2 {1, ...,K}

zv = hK
v

Equivalently
rewritten in 
vector form:



¡ Train in an unsupervised manner:
§ Use only the graph structure
§ “Similar” nodes have similar embeddings

¡ Unsupervised loss function can be anything 
from the last section, e.g., a loss based on
§ Random walks (node2vec, DeepWalk, struc2vec)
§ Graph factorization
§ Node proximity in the graph
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Directly train the model for a supervised task 
(e.g., node classification)
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Safe or toxic 
drug?

Safe or toxic 
drug?

E.g., a drug-drug 
interaction network



Directly train the model for a supervised task 
(e.g., node classification)
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Encoder output:
node embedding

Classification 
weights

Node class 
labelSafe or toxic drug?

L =
X

v2V

yv log(�(z
>
v ✓)) + (1� yv) log(1� �(z>v ✓))
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(1) Define a neighborhood 
aggregation function

(2) Define a loss function on the 
embeddings

𝒛@
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(3) Train on a set of nodes, i.e., 
a batch of compute graphs
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(4) Generate embeddings 
for nodes as needed

Even for nodes we never 
trained on!



¡ The same aggregation parameters are shared 
for all nodes:
§ The number of model parameters is sublinear in 
|𝑉| and we can generalize to unseen nodes!
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INPUT GRAPH

B

D
E

F

CA

Compute graph for node A Compute graph for node B

shared parameters

shared parameters

Wk Bk
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Inductive node embedding          Generalize to entirely unseen graphs

E.g., train on protein interaction graph from model organism A and generate 
embeddings on newly collected data about organism B

Train on one graph Generalize to new graph

zu
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Train with snapshot New node arrives
Generate embedding 

for new node

zu

¡ Many application settings constantly encounter 
previously unseen nodes:

§ E.g., Reddit, YouTube, Google Scholar
¡ Need to generate new embeddings “on the fly”



¡ Recap: Generate node embeddings by 
aggregating neighborhood information
§ We saw a basic variant of this idea
§ Key distinctions are in how different approaches 

aggregate information across the layers

¡ Next: Describe GraphSAGE graph neural 
network architecture
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1. Basics of deep learning for graphs

2. Graph Convolutional Networks

3. Graph Attention Networks (GAT)

4. Practical tips and demos
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So far we have aggregated the neighbor 
messages by taking their (weighted) average

Can we do better?
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[Hamilton et al., NIPS 2017]
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hk
v = �

�⇥
Ak · agg({hk�1

u , 8u 2 N(v)}),Bkh
k�1
v

⇤�

Any differentiable function that 
maps set of vectors in 𝑁(𝑢) to 

a single vector

Apply L2 normalization for each node embedding at every layer



¡ Simple neighborhood aggregation:

¡ GraphSAGE:
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Concatenate neighbor embedding 
and self embedding

hk
v = �

�⇥
Wk · agg

�
{hk�1

u , 8u 2 N(v)}
�
,Bkh

k�1
v

⇤�

hk
v = �

0

@Wk

X

u2N(v)

hk�1
u

|N(v)| +Bkh
k�1
v

1

A

Generalized aggregation



¡ Mean: Take a weighted average of neighbors

¡ Pool: Transform neighbor vectors and apply 
symmetric vector function

¡ LSTM: Apply LSTM to reshuffled of neighbors
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agg =
X

u2N(v)

hk�1
u

|N(v)|

Element-wise mean/max

agg = �
�
{Qhk�1

u , 8u 2 N(v)}
�

agg = LSTM
�
[hk�1

u , 8u 2 ⇡(N(v))]
�
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Key idea: Generate node embeddings based on local 
neighborhoods 

§ Nodes aggregate “messages” from their neighbors using 
neural networks

¡ Graph convolutional networks:
§ Basic variant: Average neighborhood information and stack 

neural networks
¡ GraphSAGE:

§ Generalized neighborhood aggregation



¡ Many aggregations can be performed 
efficiently by (sparse) matrix operations

¡ Let 

¡ Another example: GCN (Kipf et al. 2017)
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Tutorials and overviews:
§ Relational inductive biases and graph networks (Battaglia et al., 2018)
§ Representation learning on graphs: Methods and applications (Hamilton et al., 2017)

Attention-based neighborhood aggregation:
§ Graph attention networks (Hoshen, 2017; Velickovic et al., 2018; Liu et al., 2018)

Embedding entire graphs:
§ Graph neural nets with edge embeddings (Battaglia et al., 2016; Gilmer et. al., 2017)
§ Embedding entire graphs (Duvenaud et al., 2015; Dai et al., 2016; Li et al., 2018) and graph pooling 

(Ying et al., 2018,  Zhang et al., 2018)
§ Graph generation and relational inference (You et al., 2018; Kipf et al., 2018)
§ How powerful are graph neural networks(Xu et al., 2017)

Embedding nodes:
§ Varying neighborhood: Jumping knowledge networks (Xu et al., 2018), GeniePath (Liu et al., 2018)
§ Position-aware GNN (You et al. 2019)

Spectral approaches to graph neural networks:
§ Spectral graph CNN & ChebNet (Bruna et al., 2015; Defferrard et al., 2016)
§ Geometric deep learning (Bronstein et al., 2017; Monti et al., 2017)

Other GNN techniques:
§ Pre-training Graph Neural Networks (Hu et al., 2019)
§ GNNExplainer: Generating Explanations for Graph Neural Networks (Ying et al., 2019)
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1. Basics of deep learning for graphs

2. Graph Convolutional Networks

3. Graph Attention Networks (GAT)

4. Practical tips and demos
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¡ Recap: Simple neighborhood aggregation:

¡ Graph convolutional operator:
§ Aggregates messages across neighborhoods, 𝑁(𝑣)
§ 𝛼(% = 1/|𝑁(𝑣)| is the weighting factor (importance) of 

node 𝑢’s message to node 𝑣
§ ⟹ 𝛼(% is defined explicitly based on the structural 

properties of the graph
§ ⟹ All neighbors 𝑢 ∈ 𝑁(𝑣) are equally important to 

node 𝑣
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Can we do better than simple neighborhood 
aggregation?

Can we let weighting factors 𝜶𝒗𝒖 to be implicitly 
defined?

¡ Goal: Specify arbitrary importances to different 
neighbors of each node in the graph

¡ Idea: Compute embedding 𝒉(I of each node in 
the graph following an attention strategy:
§ Nodes attend over their neighborhoods’ message
§ Implicitly specifying different weights to different 

nodes in a neighborhood
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[Velickovic et al., ICLR 2018; Vaswani et al., NIPS 2017]



¡ Let 𝛼(% be computed as a byproduct of an 
attention mechanism 𝒂:
§ Let 𝑎 compute attention coefficients 𝒆𝒗𝒖 across pairs 

of nodes 𝑢, 𝑣 based on their messages:
𝑒(% = 𝑎(𝑾I𝒉%IOP,𝑾I𝒉(IOP)

§ 𝒆𝒗𝒖 indicates the importance of node 𝒖Q𝐬message to node 𝒗
§ Normalize coefficients using the softmax function in 

order to be comparable across different 
neighborhoods:

𝛼(% =
exp(𝑒(%)

∑I∈V ( exp(𝑒(I)
𝒉(I = 𝜎(∑%∈V ( 𝛼(%𝑾I𝒉%IOP)

Next: What is the form of attention mechanism 𝑎?
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¡ Attention mechanism 𝑎:
§ The approach is agnostic to the choice of 𝑎

§ E.g., use a simple single-layer neural network
§ 𝑎 can have parameters, which need to be estimates

§ Parameters of 𝑎 are trained jointly:
§ Learn the parameters together with weight matrices (i.e., other 

parameter of the neural net) in an end-to-end fashion

¡ Multi-head attention: Stabilize the learning process of 
attention mechanism [Velickovic et al., ICLR 2018]:
§ Attention operations in a given layer are independently 

replicated R times (each replica with different parameters)
§ Outputs are aggregated (by concatenating or adding)
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¡ Key benefit: Allows for (implicitly) specifying different 
importance values (𝜶𝒗𝒖) to different neighbors

¡ Computationally efficient: 
§ Computation of attentional coefficients can be parallelized 

across all edges of the graph
§ Aggregation may be parallelized across all nodes

¡ Storage efficient: 
§ Sparse matrix operations do not require more 

than O(V+E) entries to be stored
§ Fixed number of parameters, irrespective of graph size

¡ Trivially localized:
§ Only attends over local network neighborhoods

¡ Inductive capability: 
§ It is a shared edge-wise mechanism
§ It does not depend on the global graph structure
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¡ t-SNE plot of GAT-based node embeddings:
§ Node color: 7 publication classes
§ Edge thickness: Normalized attention coefficients between nodes 𝑖 and 
𝑗, across eight attention heads, ∑I(𝛼/YI + 𝛼Y/I)
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Attention mechanism can be used with 
many different graph neural network 
models

In many cases, attention leads to 
performance gains



1. Basics of deep learning for graphs

2. Graph Convolutional Networks (GCN)

3. Graph Attention Networks (GAT)

4. Practical tips and demos
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¡ 300M users
¡ 4+B pins, 2+B boards
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Human curated collection of pins

Pin: A visual bookmark someone has 
saved from the internet to a board 
they’ve created.
Pin: Image, text, link

Board: A collection of ideas (pins having something in common) 



Graph: 2B pins, 1B boards, 20B edges
¡ Graph is dynamic: Need to apply to new nodes 

without model retraining
¡ Rich node features: Content, images

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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¡ PinSage graph convolutional network:
§ Goal: Generate embeddings for nodes (e.g., 

Pins/images) in a web-scale Pinterest graph containing 
billions of objects

§ Key Idea: Borrow information from nearby nodes
§ E.g., bed rail Pin might look like a garden fence, but gates and 

beds are rarely adjacent in the graph

§ Pin embeddings are essential to various tasks like 
recommendation of Pins, classification, clustering, ranking
§ Services like “Related Pins”, “Search”, “Shopping”, “Ads”
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[Ying et al., WWW 2018]



Goal: Map nodes to d-dimensional 
embeddings such that nodes that are related 

are embedded close together
64

Node 𝑢

Input d-dimensional 
embedding space

𝑧%

𝑧(𝑓(𝑣)

𝑓(𝑢)

Node 𝑣

10/17/19 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs



¡ Challenges:
§ Massive size: 3 billion nodes, 20 billion edges
§ Heterogeneous data: Rich image and text features

Task: Recommend related pins to users

Source pin

8

Task: Learn node 
embeddings 𝑧/ such 
that
𝑑 𝑧\]I^P, 𝑧\]I^_
< 𝑑(𝑧\]I^P, 𝑧ab^]c^d)

Jure Leskovec, Stanford University



Goal: Identify target pin among 3B pins
¡ Issue: Need to learn with resolution of 100 vs. 3B
¡ Idea: Use harder and harder negative samples
¡ Include more and more hard negative samples for 

each epoch 
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Source pin Positive Hard negativeEasy negative
Jure Leskovec, Stanford University



¡ How to scale the training as well as inference 
of node embeddings to graphs with billions 
of nodes and tens of billions of edges?
§ 10,000X larger dataset than any previous graph 

neural network application
¡ Key innovations:
§ Sub-sample neighborhoods for efficient GPU 

batching 
§ Producer-consumer CPU-GPU training pipeline
§ Curriculum learning for negative samples
§ MapReduce for efficient inference
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¡ Three key innovations: 
1. On-the-fly graph convolutions
§ Sample the neighborhood around a node and 

dynamically construct a computation graph
§ Perform a localized graph convolution around a 

particular node
§ Does not need the entire graph during training
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¡ Three key innovations: 
1. On-the-fly graph convolutions
2. Constructing convolutions via random walks
§ Performing convolutions on full neighborhoods is infeasible:
§ How to select the set of neighbors of a node to convolve over?

§ Importance pooling: Define importance-based 
neighborhoods by simulating random walks and selecting 
the neighbors with the highest visit counts

3. Efficient MapReduce inference
§ Bottom-up aggregation of node embeddings lends itself to 

MapReduce
§ Decompose each aggregation step across all nodes into three 

operations in MapReduce, i.e., map, join, and reduce
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¡ Baselines: 
§ Visual: Nearest neighbors 

of CNN visual embeddings
for recommendations

§ Annotation: Nearest 
neighbors in terms of 
Word2vec embeddings

§ Combined: Concatenate 
embeddings:
§ Uses exact same data and 

loss function as PinSage
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PinSage gives 150% improvement in hit rate and 60% 
improvement in MRR over the best baseline
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Pixie is a purely graph-based method that uses biased random walks to generate ranking scores by simulating random 
walks starting at query Pin. Items with top scores are retrieved as recommendations [Eksombatchai et al., 2018]
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Pixie

Graph-
SAGE

Query

PinSAGE
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Pixie

Graph-
SAGE

Query

PinSAGE





¡ Data preprocessing is important: 
§ Use renormalization tricks 
§ Variance-scaled initialization 
§ Network data whitening 

¡ ADAM optimizer: 
§ ADAM naturally takes care of decaying the learning rate 

¡ ReLU activation function often works really well
¡ No activation function at your output layer: 

§ Easy mistake if you build layers with a shared function
¡ Include bias term in every layer 
¡ GCN layer of size 64 or 128 is already plenty
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¡ Debug?!:
§ Loss/accuracy not converging during training

¡ Important for model development:
§ Overfit on training data: 

§ Accuracy should be essentially 100% or error close to 0
§ If neural network cannot overfit a single data point, 

something is wrong

§ Scrutinize your loss function!
§ Scrutinize your visualizations!
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1. Basics of deep learning for graphs

2. Graph Convolutional Networks

3. Graph Attention Networks (GAT)

4. Practical tips and demos
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