
CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

Project Proposal deadline: tonight, 11:59pm

Course Notes: https://snap-stanford.github.io/cs224w-notes/
Help us write the course notes – we will give generous bonuses!

https://snap-stanford.github.io/cs224w-notes/

¡ Intuition: Map nodes to 𝑑-dimensional
embeddings such that similar nodes in the
graph are embedded close together

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 2

f ()=
Input graph 2D node embeddings

How to learn mapping function 𝒇?

¡ Goal: Map nodes so that similarity in the
embedding space (e.g., dot product)
approximates similarity (e.g., proximity)
in the network

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 3

Input network
d-dimensional

embedding space

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 4

similarity(u, v) ⇡ z>v zuGoal:

Need to define!

Input network d-dimensional
embedding space

¡ Encoder: Map a node to a low-dimensional
vector:

¡ Similarity function defines how relationships
in the input network map to relationships in
the embedding space:

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 5

enc(v) = zv
node in the input graph

d-dimensional
embedding

Similarity of u and v
in the network

dot product between
node embeddings

similarity(u, v) ⇡ z>v zu

¡ So far we have focused on “shallow”
encoders, i.e. embedding lookups:

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 6

Z = Dimension/size of
embeddings

one column per node

embedding
matrix

embedding vector for
a specific node

Shallow encoders:
§ One-layer of data

transformation
§ A single hidden layer

maps node 𝑢 to
embedding 𝒛% via
function 𝑓(), e.g.
𝒛% = 𝑓 𝒛(, 𝑣 ∈ 𝑁- 𝑢

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 7

¡ Limitations of shallow embedding methods:
§ O(|V|) parameters are needed:

§ No sharing of parameters between nodes
§ Every node has its own unique embedding

§ Inherently “transductive”:
§ Cannot generate embeddings for nodes that are not seen

during training

§ Do not incorporate node features:
§ Many graphs have features that we can and should

leverage

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 8

¡ Today: We will now discuss deep methods
based on graph neural networks:

¡ Note: All these deep encoders can be
combined with node similarity functions
defined in the last lecture

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 9

enc(v) =
multiple layers of

non-linear transformations
of graph structure

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 10

…

Output: Node embeddings Also,
we can embed larger network
structures, subgraphs, graphs

11Jure Leskovec, Stanford University

Images

Text/Speech

Modern deep learning toolbox is
designed for simple sequences & grids

But networks are far more complex!
§ Arbitrary size and complex topological structure (i.e.,

no spatial locality like grids)

§ No fixed node ordering or reference point
§ Often dynamic and have multimodal features

12

vs.

Networks Images

Text

Jure Leskovec, Stanford University

CNN on an image:

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 13

Goal is to generalize convolutions beyond simple lattices
Leverage node features/attributes (e.g., text, images)

12/6/18

Single CNN layer with 3x3 filter:

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 14

End-to-end learning on graphs with GCNs Thomas Kipf

Convolutional neural networks (on grids)

5

(Animation by
Vincent Dumoulin)

Single CNN layer with 3x3 filter:

Image Graph

12/6/18

Transform information at the neighbors and combine it:
§ Transform “messages” ℎ/ from neighbors: 𝑊/ ℎ/
§ Add them up: ∑/𝑊/ ℎ/

But what if your graphs look like this?

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 15

End-to-end learning on graphs with GCNs Thomas Kipf

or this:

Graph-structured data

6

… …

…

Input

Hidden layer Hidden layer

ReLU

Output

ReLU

What if our data looks like this?

End-to-end learning on graphs with GCNs Thomas Kipf

or this:

Graph-structured data

6

… …

…

Input

Hidden layer Hidden layer

ReLU

Output

ReLU

What if our data looks like this?

or this:

12/6/18

¡ Examples:
Biological networks, Medical networks, Social
networks, Information networks, Knowledge graphs,
Communication networks, Web graph, …

¡ Join adjacency matrix and features
¡ Feed them into a deep neural net:

¡ Issues with this idea:
¡ Issues with this idea:
§ 𝑂(𝑁) parameters
§ Not applicable to graphs of different sizes
§ Not invariant to node ordering

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 16
End-to-end learning on graphs with GCNs Thomas Kipf

A B C D E
A
B
C
D
E

0 1 1 1 0 1 0
1 0 0 1 1 0 0
1 0 0 1 0 0 1
1 1 1 0 1 1 1
0 1 0 1 0 1 0

Feat

A naïve approach

8

• Take adjacency matrix and feature matrix

• Concatenate them

• Feed them into deep (fully connected) neural net

• Done?

Problems:

• Huge number of parameters
• No inductive learning possible

?A

C

B

D

E

[A,X]

12/6/18

1. Basics of deep learning for graphs

2. Graph Convolutional Networks

3. Graph Attention Networks (GAT)

4. Practical tips and demos

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 17

¡ Local network neighborhoods:
§ Describe aggregation strategies
§ Define computation graphs

¡ Stacking multiple layers:
§ Describe the model, parameters, training
§ How to fit the model?
§ Simple example for unsupervised and

supervised training

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 19

¡ Assume we have a graph 𝐺:
§ 𝑉 is the vertex set
§ 𝑨 is the adjacency matrix (assume binary)
§ 𝑿 ∈ ℝ:×|=| is a matrix of node features
§ Node features:

§ Social networks: User profile, User image
§ Biological networks: Gene expression profiles, gene

functional information
§ No features:

§ Indicator vectors (one-hot encoding of a node)
§ Vector of constant 1: [1, 1, …, 1]

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 20

Idea: Node’s neighborhood defines a
computation graph

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 21

Determine node
computation graph

𝑖

Propagate and
transform information

𝑖

Learn how to propagate information across the
graph to compute node features

[Kipf and Welling, ICLR 2017]

¡ Key idea: Generate node embeddings based
on local network neighborhoods

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 22

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

¡ Intuition: Nodes aggregate information from
their neighbors using neural networks

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 23

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

Neural networks

¡ Intuition: Network neighborhood defines a
computation graph

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 24

Every node defines a computation
graph based on its neighborhood!

¡ Model can be of arbitrary depth:
§ Nodes have embeddings at each layer
§ Layer-0 embedding of node 𝑢 is its input feature, 𝑥𝑢
§ Layer-K embedding gets information from nodes that

are K hops away

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 25

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

xA

xB

xC

xE
xF

xA

xA

Layer-2

Layer-1
Layer-0

¡ Neighborhood aggregation: Key distinctions
are in how different approaches aggregate
information across the layers

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 26

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

?

?

?

?

What is in the box?

¡ Basic approach: Average information from
neighbors and apply a neural network

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 27

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

(1) average messages
from neighbors

(2) apply neural network

¡ Basic approach: Average neighbor messages
and apply a neural network

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 28

Average of neighbor’s
previous layer embeddings

Initial 0-th layer embeddings are
equal to node features

Embedding after K
layers of neighborhood

aggregation

Non-linearity
(e.g., ReLU)

Previous layer
embedding of vh0

v = xv

hk
v = �

0

@Wk

X

u2N(v)

hk�1
u

|N(v)| +Bkh
k�1
v

1

A , 8k 2 {1, ...,K}

zv = hK
v

𝒛@

How do we train the model to
generate embeddings?

Need to define a loss function on the embeddings
12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 29

We can feed these embeddings into any loss
function and run stochastic gradient descent to

train the weight parameters

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 30

Trainable weight matrices
(i.e., what we learn) h0

v = xv

hk
v = �

0

@Wk

X

u2N(v)

hk�1
u

|N(v)| +Bkh
k�1
v

1

A , 8k 2 {1, ...,K}

zv = hK
v

Equivalently
rewritten in
vector form:

¡ Train in an unsupervised manner:
§ Use only the graph structure
§ “Similar” nodes have similar embeddings

¡ Unsupervised loss function can be anything
from the last section, e.g., a loss based on
§ Random walks (node2vec, DeepWalk, struc2vec)
§ Graph factorization
§ Node proximity in the graph

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 31

Directly train the model for a supervised task
(e.g., node classification)

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 32

Safe or toxic
drug?

Safe or toxic
drug?

E.g., a drug-drug
interaction network

Directly train the model for a supervised task
(e.g., node classification)

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 33

Encoder output:
node embedding

Classification
weights

Node class
labelSafe or toxic drug?

L =
X

v2V

yv log(�(z
>
v ✓)) + (1� yv) log(1� �(z>v ✓))

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 34

(1) Define a neighborhood
aggregation function

(2) Define a loss function on the
embeddings

𝒛@

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 35

(3) Train on a set of nodes, i.e.,
a batch of compute graphs

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 36

(4) Generate embeddings
for nodes as needed

Even for nodes we never
trained on!

¡ The same aggregation parameters are shared
for all nodes:
§ The number of model parameters is sublinear in
|𝑉| and we can generalize to unseen nodes!

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 37

INPUT GRAPH

B

D
E

F

CA

Compute graph for node A Compute graph for node B

shared parameters

shared parameters

Wk Bk

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 38

Inductive node embedding Generalize to entirely unseen graphs

E.g., train on protein interaction graph from model organism A and generate
embeddings on newly collected data about organism B

Train on one graph Generalize to new graph

zu

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 39

Train with snapshot New node arrives
Generate embedding

for new node

zu

¡ Many application settings constantly encounter
previously unseen nodes:

§ E.g., Reddit, YouTube, Google Scholar
¡ Need to generate new embeddings “on the fly”

¡ Recap: Generate node embeddings by
aggregating neighborhood information
§ We saw a basic variant of this idea
§ Key distinctions are in how different approaches

aggregate information across the layers

¡ Next: Describe GraphSAGE graph neural
network architecture

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 40

1. Basics of deep learning for graphs

2. Graph Convolutional Networks

3. Graph Attention Networks (GAT)

4. Practical tips and demos

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 41

So far we have aggregated the neighbor
messages by taking their (weighted) average

Can we do better?

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 43

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

?

?

?

?

[Hamilton et al., NIPS 2017]

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 44

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

hk
v = �

�⇥
Ak · agg({hk�1

u , 8u 2 N(v)}),Bkh
k�1
v

⇤�

Any differentiable function that
maps set of vectors in 𝑁(𝑢) to

a single vector

Apply L2 normalization for each node embedding at every layer

¡ Simple neighborhood aggregation:

¡ GraphSAGE:

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 45

Concatenate neighbor embedding
and self embedding

hk
v = �

�⇥
Wk · agg

�
{hk�1

u , 8u 2 N(v)}
�
,Bkh

k�1
v

⇤�

hk
v = �

0

@Wk

X

u2N(v)

hk�1
u

|N(v)| +Bkh
k�1
v

1

A

Generalized aggregation

¡ Mean: Take a weighted average of neighbors

¡ Pool: Transform neighbor vectors and apply
symmetric vector function

¡ LSTM: Apply LSTM to reshuffled of neighbors

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 46

agg =
X

u2N(v)

hk�1
u

|N(v)|

Element-wise mean/max

agg = �
�
{Qhk�1

u , 8u 2 N(v)}
�

agg = LSTM
�
[hk�1

u , 8u 2 ⇡(N(v))]
�

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 47

𝑣

hk
v = �

0

@Wk

X

u2N(v)

hk�1
u

|N(v)| +Bkh
k�1
v

1

Ahk
v = �

0

@Wk

X

u2N(v)

hk�1
u

|N(v)| +Bkh
k�1
v

1

A

hk
v = �

0

@Wk

X

u2N(v)

hk�1
u

|N(v)| +Bkh
k�1
v

1

A

Key idea: Generate node embeddings based on local
neighborhoods

§ Nodes aggregate “messages” from their neighbors using
neural networks

¡ Graph convolutional networks:
§ Basic variant: Average neighborhood information and stack

neural networks
¡ GraphSAGE:

§ Generalized neighborhood aggregation

¡ Many aggregations can be performed
efficiently by (sparse) matrix operations

¡ Let

¡ Another example: GCN (Kipf et al. 2017)

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 48

Tutorials and overviews:
§ Relational inductive biases and graph networks (Battaglia et al., 2018)
§ Representation learning on graphs: Methods and applications (Hamilton et al., 2017)

Attention-based neighborhood aggregation:
§ Graph attention networks (Hoshen, 2017; Velickovic et al., 2018; Liu et al., 2018)

Embedding entire graphs:
§ Graph neural nets with edge embeddings (Battaglia et al., 2016; Gilmer et. al., 2017)
§ Embedding entire graphs (Duvenaud et al., 2015; Dai et al., 2016; Li et al., 2018) and graph pooling

(Ying et al., 2018, Zhang et al., 2018)
§ Graph generation and relational inference (You et al., 2018; Kipf et al., 2018)
§ How powerful are graph neural networks(Xu et al., 2017)

Embedding nodes:
§ Varying neighborhood: Jumping knowledge networks (Xu et al., 2018), GeniePath (Liu et al., 2018)
§ Position-aware GNN (You et al. 2019)

Spectral approaches to graph neural networks:
§ Spectral graph CNN & ChebNet (Bruna et al., 2015; Defferrard et al., 2016)
§ Geometric deep learning (Bronstein et al., 2017; Monti et al., 2017)

Other GNN techniques:
§ Pre-training Graph Neural Networks (Hu et al., 2019)
§ GNNExplainer: Generating Explanations for Graph Neural Networks (Ying et al., 2019)

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 49

1. Basics of deep learning for graphs

2. Graph Convolutional Networks

3. Graph Attention Networks (GAT)

4. Practical tips and demos

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 50

¡ Recap: Simple neighborhood aggregation:

¡ Graph convolutional operator:
§ Aggregates messages across neighborhoods, 𝑁(𝑣)
§ 𝛼(% = 1/|𝑁(𝑣)| is the weighting factor (importance) of

node 𝑢’s message to node 𝑣
§ ⟹ 𝛼(% is defined explicitly based on the structural

properties of the graph
§ ⟹ All neighbors 𝑢 ∈ 𝑁(𝑣) are equally important to

node 𝑣
12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 52

hk
v = �

0

@Wk

X

u2N(v)

hk�1
u

|N(v)| +Bkh
k�1
v

1

A

Can we do better than simple neighborhood
aggregation?

Can we let weighting factors 𝜶𝒗𝒖 to be implicitly
defined?

¡ Goal: Specify arbitrary importances to different
neighbors of each node in the graph

¡ Idea: Compute embedding 𝒉(I of each node in
the graph following an attention strategy:
§ Nodes attend over their neighborhoods’ message
§ Implicitly specifying different weights to different

nodes in a neighborhood

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 53

[Velickovic et al., ICLR 2018; Vaswani et al., NIPS 2017]

¡ Let 𝛼(% be computed as a byproduct of an
attention mechanism 𝒂:
§ Let 𝑎 compute attention coefficients 𝒆𝒗𝒖 across pairs

of nodes 𝑢, 𝑣 based on their messages:
𝑒(% = 𝑎(𝑾I𝒉%IOP,𝑾I𝒉(IOP)

§ 𝒆𝒗𝒖 indicates the importance of node 𝒖Q𝐬message to node 𝒗
§ Normalize coefficients using the softmax function in

order to be comparable across different
neighborhoods:

𝛼(% =
exp(𝑒(%)

∑I∈V (exp(𝑒(I)
𝒉(I = 𝜎(∑%∈V (𝛼(%𝑾I𝒉%IOP)

Next: What is the form of attention mechanism 𝑎?

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 54

¡ Attention mechanism 𝑎:
§ The approach is agnostic to the choice of 𝑎

§ E.g., use a simple single-layer neural network
§ 𝑎 can have parameters, which need to be estimates

§ Parameters of 𝑎 are trained jointly:
§ Learn the parameters together with weight matrices (i.e., other

parameter of the neural net) in an end-to-end fashion

¡ Multi-head attention: Stabilize the learning process of
attention mechanism [Velickovic et al., ICLR 2018]:
§ Attention operations in a given layer are independently

replicated R times (each replica with different parameters)
§ Outputs are aggregated (by concatenating or adding)

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 55

¡ Key benefit: Allows for (implicitly) specifying different
importance values (𝜶𝒗𝒖) to different neighbors

¡ Computationally efficient:
§ Computation of attentional coefficients can be parallelized

across all edges of the graph
§ Aggregation may be parallelized across all nodes

¡ Storage efficient:
§ Sparse matrix operations do not require more

than O(V+E) entries to be stored
§ Fixed number of parameters, irrespective of graph size

¡ Trivially localized:
§ Only attends over local network neighborhoods

¡ Inductive capability:
§ It is a shared edge-wise mechanism
§ It does not depend on the global graph structure

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 56

¡ t-SNE plot of GAT-based node embeddings:
§ Node color: 7 publication classes
§ Edge thickness: Normalized attention coefficients between nodes 𝑖 and
𝑗, across eight attention heads, ∑I(𝛼/YI + 𝛼Y/I)

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 57

Attention mechanism can be used with
many different graph neural network
models

In many cases, attention leads to
performance gains

1. Basics of deep learning for graphs

2. Graph Convolutional Networks (GCN)

3. Graph Attention Networks (GAT)

4. Practical tips and demos

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 58

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 59

¡ 300M users
¡ 4+B pins, 2+B boards

10/17/19 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 60

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 61

Human curated collection of pins

Pin: A visual bookmark someone has
saved from the internet to a board
they’ve created.
Pin: Image, text, link

Board: A collection of ideas (pins having something in common)

Graph: 2B pins, 1B boards, 20B edges
¡ Graph is dynamic: Need to apply to new nodes

without model retraining
¡ Rich node features: Content, images

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Q

12/6/18 62

¡ PinSage graph convolutional network:
§ Goal: Generate embeddings for nodes (e.g.,

Pins/images) in a web-scale Pinterest graph containing
billions of objects

§ Key Idea: Borrow information from nearby nodes
§ E.g., bed rail Pin might look like a garden fence, but gates and

beds are rarely adjacent in the graph

§ Pin embeddings are essential to various tasks like
recommendation of Pins, classification, clustering, ranking
§ Services like “Related Pins”, “Search”, “Shopping”, “Ads”

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 63

[Ying et al., WWW 2018]

Goal: Map nodes to d-dimensional
embeddings such that nodes that are related

are embedded close together
64

Node 𝑢

Input d-dimensional
embedding space

𝑧%

𝑧(𝑓(𝑣)

𝑓(𝑢)

Node 𝑣

10/17/19 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

¡ Challenges:
§ Massive size: 3 billion nodes, 20 billion edges
§ Heterogeneous data: Rich image and text features

Task: Recommend related pins to users

Source pin

8

Task: Learn node
embeddings 𝑧/ such
that
𝑑 𝑧\]I^P, 𝑧\]I^_
< 𝑑(𝑧\]I^P, 𝑧ab^]c^d)

Jure Leskovec, Stanford University

Goal: Identify target pin among 3B pins
¡ Issue: Need to learn with resolution of 100 vs. 3B
¡ Idea: Use harder and harder negative samples
¡ Include more and more hard negative samples for

each epoch

66

Source pin Positive Hard negativeEasy negative
Jure Leskovec, Stanford University

¡ How to scale the training as well as inference
of node embeddings to graphs with billions
of nodes and tens of billions of edges?
§ 10,000X larger dataset than any previous graph

neural network application
¡ Key innovations:
§ Sub-sample neighborhoods for efficient GPU

batching
§ Producer-consumer CPU-GPU training pipeline
§ Curriculum learning for negative samples
§ MapReduce for efficient inference

67

¡ Three key innovations:
1. On-the-fly graph convolutions
§ Sample the neighborhood around a node and

dynamically construct a computation graph
§ Perform a localized graph convolution around a

particular node
§ Does not need the entire graph during training

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 68

¡ Three key innovations:
1. On-the-fly graph convolutions
2. Constructing convolutions via random walks
§ Performing convolutions on full neighborhoods is infeasible:
§ How to select the set of neighbors of a node to convolve over?

§ Importance pooling: Define importance-based
neighborhoods by simulating random walks and selecting
the neighbors with the highest visit counts

3. Efficient MapReduce inference
§ Bottom-up aggregation of node embeddings lends itself to

MapReduce
§ Decompose each aggregation step across all nodes into three

operations in MapReduce, i.e., map, join, and reduce

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 69

¡ Baselines:
§ Visual: Nearest neighbors

of CNN visual embeddings
for recommendations

§ Annotation: Nearest
neighbors in terms of
Word2vec embeddings

§ Combined: Concatenate
embeddings:
§ Uses exact same data and

loss function as PinSage

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 70

PinSage gives 150% improvement in hit rate and 60%
improvement in MRR over the best baseline

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu12/6/18 71

Pixie is a purely graph-based method that uses biased random walks to generate ranking scores by simulating random
walks starting at query Pin. Items with top scores are retrieved as recommendations [Eksombatchai et al., 2018]

10/17/19 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 72

Pixie

Graph-
SAGE

Query

PinSAGE

10/17/19 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 73

Pixie

Graph-
SAGE

Query

PinSAGE

¡ Data preprocessing is important:
§ Use renormalization tricks
§ Variance-scaled initialization
§ Network data whitening

¡ ADAM optimizer:
§ ADAM naturally takes care of decaying the learning rate

¡ ReLU activation function often works really well
¡ No activation function at your output layer:

§ Easy mistake if you build layers with a shared function
¡ Include bias term in every layer
¡ GCN layer of size 64 or 128 is already plenty

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 75

¡ Debug?!:
§ Loss/accuracy not converging during training

¡ Important for model development:
§ Overfit on training data:

§ Accuracy should be essentially 100% or error close to 0
§ If neural network cannot overfit a single data point,

something is wrong

§ Scrutinize your loss function!
§ Scrutinize your visualizations!

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 76

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 7712/6/18

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 7812/6/18

1. Basics of deep learning for graphs

2. Graph Convolutional Networks

3. Graph Attention Networks (GAT)

4. Practical tips and demos

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 79

