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Part 2: Prediction models 
The aim of this part is describing methodologically the approach to predict the 

travel time at various conditions for the distance between each two virtual stops of the 

on-demand city transport.  

SARIMAX w/ FT model 
1. Introduction 

The main chosen approach for the chapter is autoregressive moving average 

models with exogenous input of special class – SARIMAX with Fourier terms. This 

approach has been selected for the specific problem at hand because its ability to render 

various set of inputs: 

 endogenous (discrete lagged values of the target variable) 

 one main seasonal cyclical factor (hour of day) 

 additional multiple seasonality cyclical factors (day of week, day of year) 

 various exogenous factors (environment disturbances) 

 error terms. 

In the most general case, the autoregressive models are derived from polynomial 

models e.g., the chapter turns some attention to the genesis of the particular model. 

 

2. Model derivation  

2.1. Polynomial models 

A polynomial model (Ljung, 1999) generalizes the concept of transfer functions to 

express the relationship between input, u(t), output y(t) and noise e (t), using the 

equation:  
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Where: 

 A, B, C, D and F are polynomials expressed in the time shift operator q-1.  

 ui is the i -th input,  

 nu is the total number of inputs 

 nki is the i-th lag input, which characterizes the autoregression lag.  

 e(t) - white noise dispersion. 

Simpler forms of polynomial models, such as ARX, ARMAX, etc. are often used, to 

simplify the general structure.  

There is also the option to introduce an integrator in the noise source so that the 

overall model has the form:  
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To estimate polynomial models, one could use time or frequency domain data. 

First the order of the model has to be specified as a set of integers that represent the 

number of coefficients for each polynomial you include in your chosen structure - na for 

A, nb for B, nc for C, nd for D and nf for F, nk denoting the input lags is defined as the 

number of samples before the output corresponds to the input. 

The number of coefficients in the denominator polynomials is equal to the number 

of poles, and the number of coefficients in the numerator polynomials of the model is 

equal to the number of zeros plus 1. When the dynamics from u(t) to y(t) contains a delay 

of nk samples, then the first nk coefficients of B are zeros. 

The general polynomial equation is used with respect to the time shift operator 

q-1as the following as discrete time difference equation: 
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Where:  

 y(t) is the output,  

 u(t) is the input, and  

 T is the sampling time.  

 q-1 is a time shift operator that compactly represents the difference equations using  

q−1 u (t) = u (t - T): 
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Polynomial models could encompass various configurations. These structural 

models are subsets of the general polynomial equation <10>. The structures of the model 

principally differ in how many of the polynomials are included in the structure to account 

for flexibility of modeling noise dynamics and characteristics.  

If the model is already with identified specific structure, then the dynamics and 

noise may have common or different poles. A(q) corresponds to the poles that are 

common to the dynamic model and the noise model. The use of common poles for 

dynamics and noise is useful when interference enters the input system. Fi defines the 

poles unique to the system dynamics, and D defines the poles unique to the interference. 

Specific and important modifications of polynomial (autoregressive) models: 

 ARX - The noise model is reciprocal to A and the noise is related to the dynamic 

model. ARX does not model noise and dynamics independently.  
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 ARMAX: Extends the structure of the ARX by introducing more terms for noise 

modeling using the C parameters (moving average of white noise).  
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 ARIMAX: Extends the structure of ARMAX to include an integrator in the noise 

source, e(t) for cases where the disturbance is not stationary. 
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2.2. ARMAX model 

The structure of the ARMAX model (Autoregressive Moving Average with additional 

input) is: 
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A more compact way to write the difference equation is 

  ( ) ( ) ( ) ( ) ( ) ( )kA q y t B q u t n C q e t     <9> 

Where: 

 y(t) - output at time t 

 na - Number of poles 

 nb - Number of zeros plus 1 

 nc - Number of C coefficients 

 nk - Number of input samples that occurred before the input affected the output, also 

called dead time in the system 

 y(t−1)…y(t-na) - previous outputs on which the current output depends 

 u(t-nk)...u(t-nk-nb+1) - Previous and delayed inputs on which the current output 

depends  

 e(t −1)…e(t-nc) - value of white noise interference 

The parameters na, nb and nc are the orders of the ARMAX model, and nk is the 

delay. q is the delay operator such that, 
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2.3. ARIMA model 

As defined by Box – Jenkins (1994), the autoregressive integrated moving average 

(ARIMA) process generates nonstationary series that are integrated by row D, denoted by 

I(D). A non-stationary I(D) process is one that can be made stationary by taking D 

differences. Such processes are often called different-stationary or single root processes. 

A sequence that could be modelled as a stationary ARMA (p, q) process after 

splitting D times is denoted by ARIMA ( p, D, q ): 
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where  

 ΔDyt means the D-th differentiated time series 

 εt is an uncorrelated innovation process with a mean zero.  

In the delay operator notation, L i yt = y t-i. ARIMA ( p, D, q ) becomes  
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Here ϕ ∗(L) is a non-stationary AR-polynomial of the operator with exactly D single 

roots. A factorization of this polynomial is ϕ(L)(1−L)D, where ϕ (L)=(1− ϕ 1 L -… - ϕ p L 

p) is a stable polynomial of the lag operator p AR (with all roots located outside the single 

circle). Similarly, θ (L) = (1+θ1L +... + θp L Q) is a reversible degree p polynomial MA delay 

operator (with all roots lying outside the circle unit). The signs of the coefficients in a 

polynomial of AR delay φ (L) are opposed to the right side of the equation <20>.  

 

2.4. ARIMAX model (p, D, q)  

The autoregressive moving average model, including exogenous factors, ARMAX 

(p, q), extends the ARMA model (p, q) to include the linear effect that one or more 

exogenous series have on the stationary series (Wold, 1938) of outcome yt. The general 

form of the ARMAX model (p, q) is  
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and it has the following condensed form in the notation of the delay operator : 

      ( ) ( )t t tL y c x L    <14> 

Where the vector x’t contains the values of r exogenous, time-varying predictors at time t, 

with coefficients denoted by β.  

For ARIMAX we assume the response series yt to be not stable and we difference it to form 

a stationary, by specifying the degrees of integration D. So the response series yt are 

https://translate.google.com/translate?hl=en&prev=_t&sl=bg&tl=en&u=https://translate.google.com/translate%3Fhl%3Den%26prev%3D_t%26sl%3Den%26tl%3Dbg%26u%3Dhttps://www.mathworks.com/help/econ/arma-model.html
https://translate.google.com/translate?hl=en&prev=_t&sl=bg&tl=en&u=https://translate.google.com/translate%3Fhl%3Den%26prev%3D_t%26sl%3Den%26tl%3Dbg%26u%3Dhttps://www.mathworks.com/help/econ/arma-model.html
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differenced before including the exogenous features by the degree of integration D. Then, 

the ARIMAX(p,D,q) model becomes 

* *( ) ( )t t tL y c x L          <15> 

Where 

c* = c/(1 – L)D 

θ*(L) = θ(L)/(1 – L)D 

Here the interpretation of β is the expected effect a unit increase in the predictor has on 

the difference between current and lagged values of the response. 

 

2.5. SARIMAX model 

The seasonal autoregressive integrated moving average with exogenous inputs 

(SARIMAX) is an extension of the ARIMAX model class, which fixes its biggest weakness – 

accounting for seasonality.  

A SARIMAX model is written as SARIMAX (p, d, q) (P, D, Q, S) where:  

• p is the order of the AR term.  

• d is the order of differencing needed to make the data stationary.  

• q is the order of the MA term.  

• P is the order of the seasonal AR term.  

• D is the order of the seasonal differencing needed to make data stationary.  

• Q is the order of the seasonal MA term.  

• S is the number of periods in a season.  

 

A SARIMAX (p, d, q) (P, D, Q, S) is mathematically represented as (Cools et al., 2005): 
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where:  

• 𝑦𝑡 denotes the value of the series at time t.  

• 𝑋1,𝑡,𝑋2,𝑡,…,𝑋𝑘,𝑡 denote observations of the exogenous variables.  

• 𝛽0,𝛽1,…,𝛽𝑘 denote the parameters of the regression part.  

• 𝜙1,𝜙2,…,𝜙𝑝 denote the weight of the nonseasonal autoregressive terms.  

• Φ1,Φ2,…,Φ𝑃 denote the weight of the seasonal autoregressive terms.  

• 𝜃1,𝜃2,…,𝜃𝑞 denote the weight of the nonseasonal moving average terms.  
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• Θ1,Θ2,…,Θ𝑄 denote the weight of the seasonal moving average terms.  

• 𝐵𝑠 denotes the backshift operator such that 𝐵𝑠𝑦𝑡=𝑦𝑡−𝑠.  

• ε𝑡 denotes the white noise terms.  

 

2.6. SARIMAX with Fourier Terms 

The SARIMAX model is designed to deal with a single seasonality factor. To work 

for multiple seasonality, it is possible to apply a method called Fourier terms. For two (or 

more) specific seasonalities to account for, they are added as regressors in the form of 

trigonometric generated series – as many as needed:  
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where Nt is a SARIMAX process.  

The seasonal model is modeled by adding Fourier terms that are used as external 

regressors. This approach is flexible and allows the inclusion of multiple periods. For 

example, if there are M periods in the data (p1, p2, p3, pM), there will be different Fourier 

series corresponding to each of the M periods.  

 

3. Methodical procedure of SARIMAX w/ FT 

Here some specifics of the application of the model for the current research are 

laid out. Defined are the characteristics of the desired data, specific hyperparameters and 

other features, within a formal algorithm structure. The procedure to implement the 

SARIMAX w/ FT model goes through three phases: model identification, parameter 

estimation/optimization, and prediction, with their corresponding sub-phases. 

3.1. Identification.  

This step uses the data and the knowledge regarding how it was generated to 

identify the model. There are three approaches to identification – based on prior domain 

knowledge (white box), based on statistical methods to best suit the data (black box), and 

combined of the previous two (gray box) – using some domain knowledge to narrow 

down to subclass of models and select most appropriate mathematical description based 

on the data. In this study the approach is gray box, and it can be broken down into the 

following four sub-phases: 

3.1.1. Literature and data review. 

After literature and data review in this particular study to narrow down the exact 

class of models to be used, there are three seasonal periods accepted:  

 hourly within a day, which will be rendered by the seasonal component of 

SARIMAX; 

 daily within a week  
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 and daily within a year. 

With p1 including 7 days and p2 including 365 days. For each period "pi" is selected, 

the number of members of Fourier (K i from <27>), to find the best statistical model for a 

given set of data. Given a set of models, AIC (which is derived from information theory) 

and BIC (which is derived from Bayesian theory) evaluates the quality of the model 

compared to other models and thus provides a tool for model selection. The value of Ki  is 

chosen to minimize the AIC and BIC criteria (see below). To find the exact number of 

Fourier members corresponding to each of the periods, the AIC or BIC values of the 

SARIMAX model with variable Fourier terms are calculated. The best model that 

minimizes the AIC or BIC criterion is recorded as Fourier terms.  

The total number of coefficients, which are calculated is equal to the sum of 

seasonal and non-seasonal AR and MA orders. In other words, we consider a total of "P 

plus Q, plus, p plus q" many coefficients.  

3.1.2. Data preparation.  

For the purpose of any SARIMAX model differencing operations are applied to 

make the time series data stationary. It simply means taking the difference between data 

points and its backward version. Intuitively, this is analogous to calculating the derivative. 

Augmented Dickey-Fuller test is used for verification.  

3.1.3. Model selection.  

Autocorrelation functions (ACF) and partial autocorrelation functions (PACF) are 

used to identify the orders p and q of the terms AR and MA. These functions explain the 

correlation of a value in the series with its lagged values. Since the identification process 

could find complex models of autocorrelation without clear interpretations, and in order 

to avoid any unscientific assumptions Grid Search or Stochastic search is used. 

3.2. Optimization. 

This step uses the data to train the model, estimate the coefficients and check the 

residuals to see if they adhere to the assumptions. This step can be divided into the 

following two steps: 

3.2.1. Estimation.  

Estimates are made of the parameters, and the best model is chosen based on a 

criterion. At this phase, a comprehensive search of all combinations of parameters is 

performed (hyperparameter optimization), along the chosen criterion.  

Akaike’s Information Criterion (AIC) is one option used for model selection. It 

measures the goodness of fit of a model while promoting simplicity. The AIC of a model is 

a relative measure and is meaningful when compared to other models. AIC is calculated 

as (Chatfield, 2001): 

 

ˆ2 2ln( )AIC m L      <18> 
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where  

 m - denotes the number of independent parameters estimated 

 L̂  - maximum likelihood  

The Bayesian information criterion proposed by Schwarz is another one of the tools 

used to determine the maximum number of coefficients in the model (Schwarz, 1978), ie. 

ultimately, the final appearance of the model is determined. In this way, on one hand, a 

model is obtained that describes the output data as well as possible, and on the other hand, 

protection against the so-called overfitting.  

ˆ. ( ) 2. ( )BIC m ln n ln L     <19> 

where  

 n - denotes the number of observations 

Note: although there is alternative approach (Claeskens-Hjort, 2008) here both AIC 

and BIC are setup for minimization. 

 

3.2.2. Residual diagnostics.  

The Ljung – Box statistical test is used to check if the residuals are aligned with the 

assumptions of the modelling technique. The tests on whether the residuals are white 

noise reveal valuable insights regarding the model. If the residuals are correlated, a more 

complex model is needed to capture all the information in the data. If residuals do not 

have a mean of zero, the forecast is biased. 

3.3. Forecasting.  

In this final phase, input data is used to generate forecasts from the selected and 

tested model, and the performance of the model is evaluated using forecast accuracy 

measures AIC, BIC.  

 

4. Algorithm for implementation of the model 

With business understanding and data understanding done already in general for 

the project, each applied model should be explained in terms of data preparation, data 

modeling and model validation. In this section these phases are particularly explained 

algorithmically for SARIMAX w/ FT and while at the same time several etalon models are 

developed. The software implementation is realized in Matlab (R2020a, Econometrics 

toolbox, Curve Fitting Toolbox) and the full code could be seen in the GitHub repository 

at https://github.com/InnoAir-Reserchers-Group . 

The input data used in this particular modeling procedure has two sources – traffic 

data for times of arrival for 4 consecutive stops of a bus line in Sofia (with some additional 

details about the time schedule and bus stop stays) and also weather data. All data is 

collected between 10 January 2020 and 30 July 2021.  

https://github.com/InnoAir-Reserchers-Group
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Several preliminary operations on the data are conducted, so that it would 

resemble a pseudo time-series: 

 For each day there are about 13 bus courses, and this defines the time-frame 

observation unit of the time-series as the data for a given course (row data) along 

various features (column data). 

 Some of the observed bus-courses were not completed in the data set – either 

because of particular but exceptional travel conditions, or because of data 

recording mishaps. Either case the incomplete courses have been dropped from 

further analysis – these constitute about 4% of the data. 

 In order to avoid boundary effects in the data, the non-completed first and last day 

of data are removed, so that the data for the study contains whole-day 

observations. 

 The weather data is pre-selected and synchronized as to correspond the dates & 

times of the traffic data. 

 

4.1. Data preparation implementation 

4.1.1. Data import. 

The input data is delivered as datetime features in MS Excel format. Which is read 

into MATLAB data format (note that MATLAB date numbers start with 1 = January 1, 0000 

A.D., hence there is a difference of 693960 relative to the 1900 date system of MS Excel). 

For practical purposes the data is read both as numerical values and as date string value. 

There are 3 groups of data read for each bus stop: 

– Time of arrival (i.e., variable stop_1_355, where _1 corresponds to the serial 

number of a stop, given for the current study and _355 as the official bus tope code). 

– Time scheduled to arrive (i.e., sched_1_355 with mnemonics similar to time 

of arrival above). 

– Time of stay at particular stop, estimated with granularity of 0.5 minute 

(i.e., stay_stop1 for stop 1). 

Apart from the above data, as a data key the serial number of each bus course is also 

retained from the data. 

 

4.1.2. Define target variables. 

– The target variable is defined as the time to travel to next stop, and it is 

calculated as time differences of time of arrivals in consecutive bus tops. So, for the 4 bus 

stops under study, there are 3 times of arrival (i.e., time_stop2, where 2 corresponds the 

difference between time of arrival of stop1 and stop 2). 

– Similarly calculated are the scheduled time to travel to next stop. 
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Fig. 4.1.2-1 Time of arrival for stop 2 

 

Fig. 4.1.2-2 Time of arrival for stop 3 
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Fig. 4.1.2-3 Time of arrival for stop 4 

– In order to convert the timeseries into trend stationary the first differences 

are calculated, which actually become the actual target variables (i.e., diff_stop2 is time of 

travel to stop 2.) 

 

Fig. 4.1.2-4 Time of travel for stop 2 
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Fig. 4.1.2-5 Time of travel for stop 3 

 

Fig. 4.1.2-6 Time of travel for stop 4 
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4.1.3. Data exploration. 

At this point some exploratory data analysis is a must so as to identify specific 

characteristics and / or criteria to define outliers. 

– One such characteristic is clearly visible out of the previous figures 4.1.2-1 

through 4.1.2-6 – there is a special behavior for time of arrival to stop 2 (and 

correspondingly to time of travel to stop 2) for a large subperiod of time dating between 

1 August 2020 and 31 December 2020. This will be addressed later with feature 

engineering and also would be needed for clearing the fitting data. 

– Additional analysis is done on histograms of times of arrival and times of 

travel for each bus stop. The main take here is to define reasonable criteria for outliers, 

which would also be addressed with feature engineering. 

 

Fig. 4.1.3-1 Histogram of times of arrival for stop 2 

 

Fig. 4.1.3-2 Histogram of times of arrival for stop 3 
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Fig. 4.1.3-3 Histogram of times of arrival for stop 4 

 

Fig. 4.1.3-4 Histogram of times of travel to stop 2 
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Fig. 4.1.3-5 Histogram of times of travel to stop 3 

 

 

Fig. 4.1.3-6 Histogram of times of travel to stop 4 
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4.1.4. Feature engineering. 

These operations for feature engineering are based on the traffic data 

transformations, which produce mainly dummy type or serial number type features. 

– In order to check for weekly cyclicity a day of week feature is created by 

coding Monday to Sunday as 1 to 7. 

– In order to check for day of year cyclicity a feature is created by coding 1 

January to 31 December as 1 to 366 (or 365 depending on leap year calendar). 

– In order to check for intraday hourly cyclicity a feature is created by coding 

starting hour for each arrival time by stop as 0 to 23 (note that actually the hours vary 

from 5 to 23). 

– A comparison feature to calculate delay of time of arrival in corresponding 

to the official schedule as a simple difference is calculated. Note that on some occasions 

negative delay could occur. 

– To reflect the above-mentioned special behavior for time of travel to stop2 

a dummy feature is defined as 1 between 1-Aug-2020 and 31-Dec-2020. In case of other 

special characteristics similar features may also be calculated. 

– Outliers may become important information since there might be a pattern 

in their distribution. Analyzing the histograms (fig. 4.1.3-1 through 4.1.3-6) a dummy 

feature is calculated to be equal to 1 if the corresponding times of arrival and times to 

travel for each stop comply with the criteria shown in Table 4.1.4-1. 

Table 4.1.4-1 Criteria for outliers 

Variable Bottom criterion Top criterion 
Time of arrival at stop 2 time_stop2 < 0.0003 time_stop2 > 0.0025 
Time of arrival at stop 3 time_stop3 < 0.0003 time_stop3 > 0.0020 
Time of arrival at stop 4 time_stop4 < 0.0009 time_stop4 > 0.0037 
Time of travel to stop 2 diff_stop2 < -0.0015 diff_stop2 > 0.0015 
Time of travel to stop 3 diff_stop3 < -0.0016 diff_stop3 > 0.0017 
Time of travel to stop 4 diff_stop4 < -0.0021 diff_stop4 > 0.0021 

 

– Another possible feature to be included is the previous stops times to 

account for the interconnection among the various bus stop times of arrival within the 

same bus course: for stop 2 there is no data to add; for stop 3 times of arrival at stop 2 are 

added; for stop 4 times of arrival for stop 2 and stop 3 are added. 

– Similarly previous stops stay times are added where possible: nothing to 

add for stop 2; stays at stop 2 added for stop 3; stays for stop 2, stop 3 added for stop 4. 

 

4.1.5. Data enrichment. 

The operations for data enrichment are based on exogenous data addition and 

transformation. The new features are mainly dummy type or measurement type. 

– For official holidays and weekends a dummy feature is calculated as equal 

to 1 for every Saturday and Sunday but also for the list of holidays (03-Mar-2020, 19-Apr-

2020, 01-May-2020, 06-May-2020, 24-May-2020, 06-Sep-2020, 22-Sep-2020, 24-Dec-
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2020, 25-Dec-2020, 26-Dec-2020, 01-Jan-2021, 03-Mar-2021, 19-Apr-2021, 01-May-

2021, 06-May-2021, 24-May-2021). 

– In order to check for special behavior during the official lockdown period 

in Bulgaria a dummy feature is defined as 1 between 13-Mar-2020 and 13-May-2020. 

– Wind-chill factor is imported from the available weather data, measured in 

degrees centigrade and is a combined factor to account for the windy conditions as well.  

– Humidity feature is imported from the available weather data, measured in 

percentage as the concentration of water vapor present in the air. The humidity indicates 

the likelihood for precipitation, dew, or fog to be present. 

– Clouds feature is imported from the available weather data, measured in 

percentage as relative share of sky above city of Sofia covered by clouds. 

– A new dummy feature is calculated aggregation of presence of rainfall and 

snowfall in the previous hour, mainly aiming at accounting for road conditions. 

 

4.1.6. Fourier terms analysis. 

The core of the SARIMAX w/ FT methods are its Fourier terms. To deal with 

multiple seasonality factors, they are modeled by adding Fourier terms that are used as 

external regressors. This approach is flexible and allows inclusion of multiple periods. 

There would be different Fourier series corresponding to each of the seasonal periods.  

For each time-of-travel data set, there are seven seasonal periods, each of them 

modelled by up to 8 Fourier terms. For each of the periods, the number of Fourier terms 

is chosen to find the best statistical model. Given a set of models, the quality of the model 

is compared to other models and the best of them is selected for use. 

The seasonal periods used are: 

 Course within day – on average about 14 courses per day 

 Hour of day – about 18 hours a day 

 Day of week – seven days 

 Course within week – about 91 courses per week 

 Month within year – 12 months per year 

 Day of year –366 days per year (note: 2020 is a leap year) 

 Day of dataset – 560 days in the dataset 

 

– Modeling Fourier terms for stop 2. 

The best results from the modeling Fourier terms for stop 2 are shown in Table 

4.1.6-1. Visible from the table is that most of the periods do not result in good results (R-

square ~ 0 and Adjuster R-square <0) even though the table only presents their best 

reasonable modification. The Periods which have some (but not at all strong) impact are 

Daily courses (fig. 4.1.6-1), Hours within the day (fig. 4.1.6-2), and to some extend – 

weekly courses (fig. 4.1.6-3). The models are fitted after filtering out the outliers as 

defined above. 
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Table 4.1.6-1 Best fitted Fourier terms by seasonal period for stop 2 

 

 

Figure 4.1.6-1 Best fitted Fourier term with period daily course for stop 2 
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Figure 4.1.6-2 Best fitted Fourier term with period hour within the day for stop 2 

 

Figure 4.1.6-3 Best fitted Fourier term with period weekly course for stop 2 

 

– Modeling Fourier terms for stop 3.  

The best results from the modeling Fourier terms for stop 3 are shown in Table 

4.1.6-2. Visible from the table is that most of the periods do not result in good results (R-

square ~ 0 and Adjuster R-square <0) even though the table only presents their best 

reasonable modification. The Periods which have some (but not at all strong) impact are 

Daily courses (fig. 4.1.6-4), Hours within the day (fig. 4.1.6-5), and to some extend – 

weekly courses (fig. 4.1.6-6). The models are fitted after filtering out the outliers as 

defined above. 

 

Table 4.1.6-2 Best fitted Fourier terms by seasonal period for stop 3 
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Figure 4.1.6-4 Best fitted Fourier term with period daily course for stop 3 

 

Figure 4.1.6-5 Best fitted Fourier term with period hour within the day for stop 3 

 

Figure 4.1.6-6 Best fitted Fourier term with period weekly course for stop 3 
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– Modeling Fourier terms for stop 4.  

The best results from the modeling Fourier terms for stop 4 are shown in Table 

4.1.6-3. Visible from the table is that most of the periods do not result in good results (R-

square ~ 0 and Adjuster R-square <0) even though the table only presents their best 

reasonable modification. The Periods which have some (but not at all strong) impact are 

Daily courses (fig. 4.1.6-7) and Hours within the day (fig. 4.1.6-8) The models are fitted 

after filtering out the outliers as defined above. 

 

Table 4.1.6-3 Best fitted Fourier terms by seasonal period for stop 4 

 

 

Figure 4.1.6-7 Best fitted Fourier term with period daily course for stop 4 
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Figure 4.1.6-8 Best fitted Fourier term with period hour within the day for stop 4 

 

4.1.7. Forming data sets. 

As a terminal phase of data preparation, finalizing operations are conducted on the 

data so as to prepare useful time series data frame: 

– Due to the previous operation of first difference the target feature is now 

one observation short, this is why a 0 is added at the beginning of the series. 

– Collect all data for modeling for each stop in one timetable for multivariate 

time series data, stored in a MATLAB table  

– As a regularization measure each dataset is split in train and validation 

samples, where the test consists of all the last week of data (starting from 23-Jul-2021) 

and the train consists of all the rest. 

Table 4.1.6-1 Sample from data for stop 2  
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2020-01-10 05:30 1 1 -0.00037 -0.00040 -0.0007 0.0000 5 -4.3 0 86 0 737800.23 0 0 737800 0 5 1 -0.00006 10 1 
2020-01-10 06:43 1 2 0.00031 0.00029 -0.0002 0.0003 6 -2.5 0 79 0 737800.28 0 0 737800 0 5 2 0.00001 10 1 

2020-01-10 07:47 1 3 0.00013 -0.00004 0.0007 0.0007 7 0.2 0 69 0 737800.32 0 0 737800 0 5 3 0.00003 10 1 
2020-01-10 09:00 0 4 0.00004 0.00002 -0.0001 -0.0004 9 3.8 0 59 0 737800.38 0 0 737800 0 5 4 0.00001 10 1 
2020-01-10 10:30 1 5 0.00002 0.00002 -0.0003 0.0004 10 4.8 0 55 0 737800.44 0 0 737800 0 5 5 0.00000 10 1 

 

Table 4.1.6-2 Sample from data for stop 3  
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2020-01-10 05:31 1 1 0.00014 0.00023 -0.0012 0.0000 5 -4.3 0 86 0 737800.23 0 0 0 737800 0.0007 5 1 0.00008 10 1 

2020-01-10 06:44 1 2 -0.00010 -0.00012 -0.0007 0.0001 6 -2.5 0 79 0 737800.28 0 0 1 737800 0.0010 5 2 0.00000 10 1 
2020-01-10 07:49 1 3 0.00007 0.00009 0.0003 0.0000 7 0.2 0 69 0 737800.33 0 0 1 737800 0.0017 5 3 0.00004 10 1 

2020-01-10 09:01 0 4 0.00000 0.00001 -0.0007 -0.0002 9 3.8 0 59 0 737800.38 0 0 0 737800 0.0013 5 4 0.00000 10 1 
2020-01-10 10:31 1 5 0.00031 0.00007 -0.0006 0.0003 10 4.8 0 55 0 737800.44 0 0 1 737800 0.0017 5 5 0.00006 10 1 
2020-01-10 12:54 0 6 -0.00050 -0.00003 -0.0002 0.0004 12 9.3 0 36 0 737800.54 0 0 1 737800 0.0013 5 6 0.00000 10 1 
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Table 4.1.6-3 Sample from data for stop 4  
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2020-01-10 05:34 1 1 0.00015 0.00008 -0.0006 0.0000 5 -4.3 0 86 0 737800.23 0 0 0 1 737800 0.0007 0.0009 5 1 10 

2020-01-10 06:48 1 2 0.00006 -0.00027 0.0004 0.0004 6 -2.5 0 79 0 737800.28 0 0 1 0 737800 0.0010 0.0010 5 2 10 
2020-01-10 07:52 1 3 0.00008 0.00034 0.0004 -0.0002 7 0.2 0 69 0 737800.33 0 0 1 2 737800 0.0017 0.0010 5 3 10 
2020-01-10 09:04 0 4 -0.00003 0.00084 -0.0006 0.0000 9 3.8 0 59 0 737800.38 0 0 0 0.5 737800 0.0013 0.0008 5 4 10 

2020-01-10 10:34 1 5 -0.00001 0.00071 -0.0006 -0.0001 10 4.8 0 55 0 737800.44 0 0 1 0 737800 0.0017 0.0011 5 5 10 
2020-01-10 12:56 0 6 -0.00011 0.00000 -0.0006 -0.0003 12 9.3 0 36 0 737800.54 0 0 1 0 737800 0.0013 0.0015 5 6 10 

2020-01-10 15:19 20 7 0.00104 0.00001 0.0001 0.0010 15 8.5 0 47 0 737800.64 0 0 0 1 737800 0.0014 0.0011 5 7 10 

 

4.2. Data modeling. 

 

4.2.1. Endogenous feature engineering. 

Next using the autocorrelation function (ACF) and partial autocorrelation function 

(PACF) the moving average (MA) and the auto regression (AR) lags significance is 

determined. 

– ACF is analysis for the number of significant MA lags. It turns out for all 

stops we have the simplest possible pattern of MA=1 (e.g., 1 significant lag back). 

 

 

Figure 4.2.1-1 Sample autocorrelation function of stop 2 
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Figure 4.2.1-2 Sample autocorrelation function of stop 3 

 

Figure 4.2.1-3 Sample autocorrelation function of stop 4 
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– PACF is analysis for the number of significant AR lags. It turns out that the 

results are close – 14 significant lags for stop 2 and 13 significant lags for both stop 3 and 

stop 4. 

 

 

Figure 4.2.1-4 Sample partial autocorrelation function of stop 2 
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Figure 4.2.1-5 Sample partial autocorrelation function of stop 3 

 

Figure 4.2.1-6 Sample partial autocorrelation function of stop4 

 

4.2.2. Statistical tests 

- Augmented Dickey-Fuller Test 

Null Hypothesis: predicted feature contains a unit root 

 

 

 

Test Parameters: Lags: 0; Model: AR; Test Statistic: t1; Significance Level: 0.05 

Table 4.2.2-1 ADF Test Results 

Feature Null Rejected P-Value Test Statistic Critical Value 
Stop 2 true 0.001 -139.2992 -1.9416 
Stop 3 true 0.001 -135.2616 -1.9416 
Stop 4 true 0.001 -141.5354 -1.9416 
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-  KPSS Test 

Null Hypothesis: the predicted feature is trend stationary 

 

 

 

 

 

Test Parameters: Lags: 0; Include Trend: true; Significance Level: 0.05 

Table 4.2.2-2 KPSS Test Results 

Feature Null Rejected P-Value Test Statistic Critical Value 
Stop 2 false 0.1 0.0001678 0.146 
Stop 3 false 0.1 0.00010895 0.146 
Stop 4 false 0.1 9.0571e-05 0.146 

 

4.2.3. Model estimation. 

- SARIMAX(14,2,1,1,0,1) for stop 2 

Seasonal ARIMA model of time series for stop 2 using exogenous predictors. The 

model uses the following equation: 

 

Table 4.2.3-1 Estimation Results 

Parameter Value Standard Error t Statistic P-Value 
Constant 0.00016817 3.8781e-05 4.3365 1.4474e-05 
AR{1} -1.6257 0.029694 -54.7483 0 
AR{2} -2 0.049076 -40.7541 0 
AR{3} -2.1924 0.06193 -35.4019 1.598e-274 
AR{4} -2.288 0.069019 -33.1505 5.579e-241 
AR{5} -2.2936 0.072021 -31.846 1.4938e-222 
AR{6} -2.2215 0.072602 -30.5988 1.2709e-205 
AR{7} -2.0609 0.070974 -29.0368 2.2616e-185 
AR{8} -1.8489 0.06649 -27.8066 3.6078e-170 
AR{9} -1.5969 0.059805 -26.7027 4.3848e-157 
AR{10} -1.3269 0.052137 -25.4498 7.103e-143 
AR{11} -1.0345 0.043688 -23.6793 5.8876e-124 
AR{12} -0.73653 0.033797 -21.7927 2.7225e-105 
AR{13} -0.43347 0.022708 -19.0889 3.1238e-81 
AR{14} -0.1703 0.011617 -14.66 1.1632e-48 
MA{1} -0.035087 0.015753 -2.2273 0.02593 
SMA{1} -0.035087 0.015768 -2.2251 0.026073 
Beta(clouds_all) 9.087e-07 1.6514e-07 5.5026 3.7416e-08 
Beta(daily_course) 1.5837e-05 6.4743e-06 2.4462 0.014437 
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Parameter Value Standard Error t Statistic P-Value 
Beta(daily_course_ft2) 0.35412 0.075609 4.6836 2.8192e-06 
Beta(day_hour2) -7.2087e-06 5.2729e-06 -1.3671 0.17158 
Beta(day_hour_ft2) 0.44677 0.075596 5.9099 3.4223e-09 
Beta(delay_stop2) 0.01994 0.0013653 14.6048 2.6172e-48 
Beta(feels_like) -8.6367e-07 7.8123e-07 -1.1055 0.26893 
Beta(holiday_weekend) 1.3174e-06 1.6567e-05 0.079521 0.93662 
Beta(humidity) -4.2995e-06 3.9227e-07 -10.9606 5.9118e-28 
Beta(lockdowns) -6.579e-06 1.4484e-05 -0.45423 0.64966 
Beta(outliers2) 0.00037892 1.8757e-05 20.2016 9.4791e-91 
Beta(pour) 9.8153e-05 1.9257e-05 5.0971 3.4491e-07 
Beta(time_mode2) 3.8645e-05 2.4848e-05 1.5552 0.11989 
Beta(week_day) 3.9372e-06 3.6761e-06 1.071 0.28416 
Beta(weekly_course) 7.0687e-08 2.0339e-07 0.34755 0.72818 
Beta(weekly_course_ft2) 0.064911 0.20632 0.31461 0.75306 
Beta(year_day) 1.5374e-07 5.2893e-07 0.29067 0.77131 
Beta(year_month) -4.6157e-06 1.5872e-05 -0.29082 0.77119 
Variance 1.7058e-07 3.2089e-08 5.3158 1.0621e-07 

Best goodness of Fit is at AIC: -92819.6321; BIC: -92571.4486 

 

Figure 4.2.3-1 Plot the fit of model SARIMAX and time series for stop 2 
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Figure 4.2.3-2 Quantile-quantile plot of the residuals of model SARIMAX for stop 2 

 

- SARIMAX(13,2,1,1,0,1) for stop 3 

Seasonal ARIMA model of time series stop 3 using exogenous predictors. The 

model uses the following equation: 

 

Table 4.2.3-2 Estimation Results 

Parameter Value Standard Error t Statistic P-Value 
Constant -3.8919e-05 4.2363e-05 -0.9187 0.35825 
AR{1} -1.5974 0.013704 -116.5636 0 
AR{2} -1.9179 0.02083 -92.0761 0 
AR{3} -2.0595 0.025769 -79.9229 0 
AR{4} -2.0545 0.029229 -70.2904 0 
AR{5} -1.9672 0.031695 -62.0666 0 
AR{6} -1.8525 0.033371 -55.5143 0 
AR{7} -1.6846 0.033245 -50.6719 0 
AR{8} -1.49 0.03211 -46.4043 0 
AR{9} -1.2765 0.028746 -44.4053 0 
AR{10} -0.99312 0.024657 -40.2773 0 
AR{11} -0.69827 0.020005 -34.9053 6.1884e-267 
AR{12} -0.40643 0.01392 -29.1984 2.0308e-187 
AR{13} -0.16085 0.007032 -22.8733 8.5635e-116 
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Parameter Value Standard Error t Statistic P-Value 
MA{1} 0.097659 0.0082432 11.8472 2.2238e-32 
SMA{1} 0.097659 0.0082519 11.8347 2.5832e-32 
Beta(clouds_all) 3.7062e-07 1.5554e-07 2.3828 0.01718 
Beta(daily_course) 2.2364e-05 5.3688e-06 4.1655 3.1063e-05 
Beta(daily_course_ft3) -0.006855 0.008082 -0.84818 0.39634 
Beta(day_hour3) -1.803e-05 4.3117e-06 -4.1816 2.8946e-05 
Beta(day_hour_ft3) 0.69059 0.046371 14.8925 3.6846e-50 
Beta(delay_stop3) 0.0012732 0.00096803 1.3153 0.18841 
Beta(feels_like) -5.6629e-07 7.3072e-07 -0.77497 0.43836 
Beta(holiday_weekend) 8.6267e-05 1.9079e-05 4.5216 6.1364e-06 
Beta(humidity) -1.9044e-06 3.9947e-07 -4.7673 1.8668e-06 
Beta(lockdowns) 3.1312e-05 1.6801e-05 1.8637 0.062365 
Beta(outliers3) 0.00065702 1.3592e-05 48.34 0 
Beta(pour) 1.4492e-05 1.5805e-05 0.91694 0.35917 
Beta(stay_stop2) 0.00032139 8.1263e-06 39.5489 0 
Beta(time_stop2) -0.02096 0.0075395 -2.78 0.0054359 
Beta(week_day) 5.0298e-06 3.8108e-06 1.3199 0.18687 
Beta(weekly_course) -9.9998e-08 2.189e-07 -0.45682 0.6478 
Beta(weekly_course_ft3) 0.57635 0.11711 4.9216 8.5841e-07 
Beta(year_day) -3.5386e-07 5.6883e-07 -0.62208 0.53389 
Beta(year_month) 1.6657e-05 1.7546e-05 0.94935 0.34244 
Variance 1.1579e-07 2.577e-08 4.4934 7.0099e-06 

Best goodness of Fit is at AIC: -95661.5808; BIC:-95413.3924 

 

Figure 4.2.3-3 Plot the fit of model SARIMAX and time series stop 3 
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Figure 4.2.3-4 Quantile-quantile plot of the residuals of model SARIMAX for stop 3 

 

- SARIMAX(13,2,1,1,0,1) for stop 4 

Seasonal ARIMA model of time series diff_stop4_ using exogenous predictors. The 

model uses the following equation: 

 

Table 4.2.3-3 Estimation Results 

Parameter Value Standard Error t Statistic P-Value 
Constant -5.9846e-05 7.1073e-05 -0.84203 0.39977 
AR{1} -1.6573 0.024511 -67.6147 0 
AR{2} -2.0454 0.039631 -51.6107 0 
AR{3} -2.2328 0.049351 -45.2425 0 
AR{4} -2.2707 0.055077 -41.2272 0 
AR{5} -2.189 0.058097 -37.6784 1.123e-310 
AR{6} -2.0267 0.058737 -34.5053 6.684e-261 
AR{7} -1.8326 0.057298 -31.9838 1.8297e-224 
AR{8} -1.5899 0.054185 -29.3422 3.0015e-189 
AR{9} -1.3136 0.048178 -27.2656 1.0843e-163 
AR{10} -1.023 0.040523 -25.2457 1.2637e-140 
AR{11} -0.72879 0.031723 -22.9736 8.5642e-117 
AR{12} -0.44074 0.021671 -20.3377 5.9628e-92 
AR{13} -0.18034 0.010905 -16.5375 1.9718e-61 
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Parameter Value Standard Error t Statistic P-Value 
MA{1} 0.030396 0.014087 2.1577 0.030954 
SMA{1} 0.030396 0.014088 2.1576 0.030961 
Beta(clouds_all) 6.804e-07 2.6007e-07 2.6162 0.0088916 
Beta(daily_course) 8.0429e-06 8.3066e-06 0.96825 0.33292 
Beta(daily_course_ft4) 0.023897 0.0115 2.078 0.037708 
Beta(day_hour4) -1.3383e-05 6.5464e-06 -2.0444 0.040914 
Beta(day_hour_ft4) 0.18492 0.0273 6.7736 1.2559e-11 
Beta(delay_stop4) 0.036343 0.0019026 19.1021 2.4258e-81 
Beta(feels_like) -1.5467e-06 1.1243e-06 -1.3756 0.16894 
Beta(holiday_weekend) 0.00015858 2.7836e-05 5.697 1.2196e-08 
Beta(humidity) -3.9677e-06 6.2762e-07 -6.3218 2.5854e-10 
Beta(lockdowns) 6.8149e-05 2.7774e-05 2.4537 0.014138 
Beta(outliers4) 0.00052314 2.4305e-05 21.5238 9.3269e-103 
Beta(pour) 7.5714e-05 3.0917e-05 2.4489 0.014328 
Beta(stay_stop2) 4.8359e-05 1.8702e-05 2.5858 0.009715 
Beta(stay_stop3) 0.00028079 1.4047e-05 19.9892 6.8372e-89 
Beta(time_stop2) -0.014008 0.018107 -0.77363 0.43915 
Beta(time_stop3) 0.039206 0.022243 1.7626 0.077973 
Beta(week_day) 3.9385e-06 6.1096e-06 0.64465 0.51916 
Beta(weekly_course) 1.0663e-07 3.394e-07 0.31418 0.75339 
Beta(year_day) 2.5331e-07 8.8738e-07 0.28545 0.7753 
Beta(year_month) -3.048e-08 2.7184e-05 -0.0011212 0.99911 
Variance 3.8601e-07 4.3229e-08 8.9295 4.279e-19 

Best goodness of Fit is at AIC-86884.136; BIC:-86629.0535 

 

Figure 4.2.3-5 Plot the fit of model SARIMAX and time series for stop 4 
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Figure 4.2.3-6 Quantile-quantile plot of the residuals of model SARIMAX for stop 4 

 
 

4.3. Model validation. 

4.3.1. Out of sample prediction. 

 

Figure 4.3.1-1 Out of sample prediction and test set for stop 2 
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Figure 4.3.1-2 Out of sample prediction and test set for stop 3 

 

Figure 4.3.1-3 Out of sample prediction and test set for stop 4 

 

4.3.2. Relative mean square error. 

Table 4.3.2-1 Relative mean square error in seconds 

 Stop 2 Stop 3 Stop 4 
RMSE (seconds) 43.16 26.95 54.82 
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