
AI For Coding
Yasen Kiprov



About me
● Over 15 years in the field, AI, NLP

● AI team lead at SiteGround

● Co-organizer of PyData Sofia meetups

Interests: Education, Applied AI



Agenda
● Introduction
● AI for code generation

○ Applications
● AI assistants in your IDE
● Exercise



LLMs are Disruptive

Източник: https://agiworkshop.github.io/files/How_far_are_we_from_AGI_preprint.pdf

https://agiworkshop.github.io/files/How_far_are_we_from_AGI_preprint.pdf


GPT History
● Attention Is All You Need (2017) - transformer
● BERT (2018) - training
● GPT-3 (2019) - scaling

Next word prediction



ChatGPT
● GPT tuned on dialogues, RLHF
● Dialogue:

○ System Prompt
○ Prompt
○ Completion



LLM Specifics

● Replies fast
● Writes thoroughly
● Can reply to everything
● Has tons of information

○ (Up to 2021 2023 2024)

- Bad critical thinker

- Easily misled

- Hallucinates

Does not realise what it’s 
saying



How to Write Prompts
● Command / question
● Context

○ Role of the AI assistant
○ Domain
○ Extra information

● Format
○ Length
○ Style / wording



How To Treat the Assistant
● Assistant / Intern

○ Give it tasks
○ Micro-manage

● Peer
○ Discuss
○ Pair with it

● Expert
○ Consult with it



Commercial Applications
● chatgpt.com

○ GPT 4o
● gemini.google.com
● claude.ai

○ Sonnet 3.5
● bing.com/chat

○ GPT 4 in Creative mode

Github Copilot



Open Source Models
● Llama Family, Codellama
● Mistral Family, Codestral
● DeepSeek Coder 2 (latest and greatest)
● OpenCode
● CodeQwen
● …
https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard 

https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard


AI For Code Generation



Code Generation
● Similar to text generation
● Context is crucial
● Evaluation is different

○ Can cause damage
● State of art: GPT-4o

○ Open source models are close
● Side note: gamma.app



Pros and Cons

● Works surprisingly well
● Understands complex 

code instantly(demo)
● Takes huge contexts
● 55% increase in speed

- Decrease of quality

- Decrease of code reuse

- 30% of code is accepted as is

- Sometimes knowledge is not 

up to date

Dangerously misleads 
developers

Source: https://dev.to/jesterxl/github-copilot-research-finds-downward-pressure-on-code-quality-4m87 

https://dev.to/jesterxl/github-copilot-research-finds-downward-pressure-on-code-quality-4m87


Prompt Engineering
● System instructions
● User message
● Context is important

○ Large context is OK
○ Too large context may be a problem

Concept: Micro-manage your bot



System instructions
● Persona

“You are an experienced python developer. Your job is to 
answer questions and write valid and concise code according 
to user’s requirements.”

● Generic Context

“You know the WordPress REST API. You can make direct 
API calls using …”



Prompt techniques
● Ask GPT for advice
● Iterate
● Be direct, write explicitly
● Describe desired outcome

○ Output format
● Use Chain of Thought



AI for code generation
● Get ideas / learn
● Debug
● Write “auxiliary code”
● Write one time scripts
● Write code/test/docs faster

Don’t trust chatGPT



Get Ideas / Learn
● Instant Stack Overflow
● Like Google (recently)

➢ How to do something
➢ What tools/libs to use
➢ Where to start
➢ Write some pseudocode
➢ What to look out for



Get Ideas / Learn
● Provide enough context
● Ask open questions
● Steer the dialogue
● Ask for sources and more information
● Ask for multiple opinions
● Ask to self-reflect



Debug / Understand Code
● Saves time

○ Helps when blocked
● Prompt structure:

○ Context -> code -> question
● Iterate to reach the right question
● Side effect - get refactoring ideas

“What does this code do”

“What is the problem with this code”

“This code … gives me this error …”



Debug / Understand Code
● Paste enough context

○ Paste code
○ Describe what’s missing

● Paste error without other instructions
● Steer away from impossible / improbable 

solutions



Write “Auxiliary Code”

● Not part of a large codebase
● Not your usual environment / language
● Easy to test
● Not critical code

○ Don’t bother for quality, maintainability, etc.
● SQL Queries

○ Provide schema as context



Write “Auxiliary Code”

● Instructions are crucial
● Provide code context, libraries, imports
● Write pseudo-code and TODOs

○ When you don’t know
○ When code is complex
○ When code is long & boring



Write One-time Scripts

● Disposable code
● Context - the input and desired output
● Iterate / run the scripts quickly
● Translate code from other languages
● (GPT-4o writes it by itself)



Write Code / Tests / Docs

● Context is crucial
● Prompt is crucial
● Tests and docs are easy
● Integrated code in large project is harder



Write Code / Tests / Docs

● Write smaller (local) chunks
● Automate context
● Save prompts
● IDE plugins:

○ Github Copilot 
○ Continue.dev



● Be cautious what goes where
○ Don’t paste without thinking
○ Automate carefully

● Don’t trust OpenAI anyone
○ Critical code
○ Passwords, connection strings, tokens, private keys
○ Client info

Security Issues



AI in the IDE
Continue.dev



Plugin for
VS Code and 

JetBrains

Alternative to 
GitHub Copilot Free & Open

(In Beta for VS Code and Alpha for JetBrains)



Why

Extensible

Open source

Viral community

Rich functionality



Model Providers

Self-hosted models

Ollama, LM Studio, Llama.cpp, …

SaaS

AWS Bedrock, Replicate, HuggingFace, …

Commercial APIs

OpenAI, Anthropic, Gemini, Mistral, …



Context extensions

Custom config
● no telemetry
● system prompt

WIP: Experiments with 
open source models

How We Integrate Continue



Continue Demo



● Discuss ideas and approaches for a problem / task you have. 
● Learn how to do something technically on your project. 
● “Debug” a script - ask for description of what it does and how it 

can be improved. Ask for flaws in the code.
● Write something in pseudo-code or code skeleton with TODOs 

and finish it with chatGPT
● Experiment on the above, providing different contexts.

Exercises - ChatGPT and Your Projects 


